Strasburg M, Christensen S. Evaluating the Interaction of Emerging Diseases on White-Tailed Deer Populations Using an Agent-Based Modeling Approach.
Pathogens 2024;
13:545. [PMID:
39057772 PMCID:
PMC11279658 DOI:
10.3390/pathogens13070545]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Disease co-occurrence in wildlife populations is common yet understudied. In the case of disease-caused mortality, the mortality attributed to one disease has the potential to buffer populations against subsequent alternative disease outbreaks by reducing populations and thus contacts needed to sustain disease transmission. However, substantial disease-driven population declines may also prevent populations from recovering, leading to localized extinctions. Hemorrhagic disease (HD), a vector-transmitted, viral disease in white-tailed deer (WTD), similar to chronic wasting disease (CWD), a prion disease, has increased in frequency and distribution in the United States. However, unlike CWD, which progresses slowly, HD can cause mortality only days after infection. Hemorrhagic disease outbreaks can result in substantial localized mortality events in WTD near vector habitats such as wetlands and may reduce local deer densities and consequent CWD transmission. The objective of our study was to evaluate the potential for HD outbreaks to buffer CWD risk where the diseases co-occur. Using an agent-based modeling approach, we found that frequent, intense HD outbreaks have the potential to mitigate CWD risk, especially if those outbreaks occur shortly after CWD introduction. However, HD outbreaks that do not result in substantial WTD mortality are unlikely to impact CWD or WTD population dynamics. Severe HD outbreaks may reduce CWD cases and could present an opportunity for managers to boost CWD control initiatives in a post-HD outbreak year.
Collapse