1
|
Vicedo T, Navas I, María-Mojica P, García-Fernández AJ. Widespread use of anticoagulant rodenticides in agricultural and urban environments. A menace to the viability of the endangered Bonelli's eagle (Aquila fasciata) populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124530. [PMID: 39004203 DOI: 10.1016/j.envpol.2024.124530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Anticoagulant rodenticides (ARs) are one of the most toxic groups of compounds currently used worldwide for rodent pest control. Toxic baits are often, directly or indirectly, ingested by non-target animals, resulting in secondary poisoning and frequently affecting apex predators. Their presence in many species of raptors is quite common, particularly scavenger species, with some of these acting as sentinels for the presence of these substances in the environment. However, there is less data on the presence of ARs in Bonelli's eagle, one of the most endangered eagle species in Spain and which is experiencing a negative population trend in Europe. This medium-sized eagle feeds predominantly on live species, and rarely consumes carrion. In this study, 17 carcasses of Bonelli's eagles from the Eastern Spain were necropsied. Both first and second generation ARs in their livers were analyzed by HPLC-MS-TOF revealing that all the eagles studied had been exposed to at least 5 ARs, out of a total of 10 ARs analyzed, with 7 being the highest number of ARs detected in a sample. Second generation ARs were the most prevalent, particularly bromadiolone and brodifacoum, with the highest concentrations in 94% of the cases. More than a third of the eagles presented a liver concentration of greater than 200 ng/g ARs, suggesting AR poisoning. The elevated presence of these compounds in Bonelli's eagles could be a new cause of mortality for this species or could explain other causes of death, such as the increased mortality in power lines, and should be taken into account for their conservation. At the same time, the presence of these compounds in the environment also represents a risk to public health, as the most frequent species in the diet of Bonelli's eagle (rabbits and partridges) are also hunted and consumed by hunters and their families.
Collapse
Affiliation(s)
- T Vicedo
- Service of Toxicology and Forensic Veterinary Medicine, Department of Health Sciences, Faculty of Veterinary Medicine, Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain; Biodiversity Research Institute (CSIC -University of Oviedo - Principality of Asturias), Spanish National Research Council, Mieres Campus, Research Building, 33600, Mieres, Asturias, Spain
| | - I Navas
- Service of Toxicology and Forensic Veterinary Medicine, Department of Health Sciences, Faculty of Veterinary Medicine, Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain; Toxicology and Risk Assessment Research Group, IMIB-Pascual Parrilla, University of Murcia, 30120 El Palmar, Spain.
| | - P María-Mojica
- Service of Toxicology and Forensic Veterinary Medicine, Department of Health Sciences, Faculty of Veterinary Medicine, Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain; Wildlife Rehabilitation Centre "Santa Faz", VAERSA-Wildlife Service, Generalitat Valenciana, 03559 Santa Faz, Alicante, Spain
| | - A J García-Fernández
- Service of Toxicology and Forensic Veterinary Medicine, Department of Health Sciences, Faculty of Veterinary Medicine, Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain; Toxicology and Risk Assessment Research Group, IMIB-Pascual Parrilla, University of Murcia, 30120 El Palmar, Spain
| |
Collapse
|
2
|
Bogan JE, O'Hanlon BM, Steen DA, Horan T, Taylor R, Mason AK, Breen T, Andreotta H, Cornelius B, Childress A, Elmore M. Health Assessment of Free-Ranging Eastern Indigo Snakes (Drymarchon couperi) from Hydrologic Restoration Construction Sites in South Florida, USA. J Wildl Dis 2024; 60:39-51. [PMID: 37972635 DOI: 10.7589/jwd-d-22-00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/21/2023] [Indexed: 11/19/2023]
Abstract
There is a paucity of information regarding the health status of free-ranging eastern indigo snakes (EIS; Drymarchon couperi) in heavily modified and developing landscapes. As a component of regional Florida Everglades restoration efforts, several areas occupied by EIS are being converted from agricultural lands to reservoirs. From 2020 to 2022, 28 EIS were opportunistically captured at two of these sites and brought into captivity to join a captive breeding colony; however, 11 snakes died within 5 mo of capture. Health assessments were performed on 28 individuals and included hematology and plasma biochemistry analysis, as well as screening for pesticide contaminant levels, parasites, and other pathogens. Overall, the presence of pathogens was relatively high, suggesting immunosuppression secondary to stress: 25/28 (89.4%) Kalicephalus sp.; 12/28 (42.9%) Raillietiella orientalis; 11/28 (39.2%) Ochetosoma validum; 7/28 (25.0%) Cryptosporidium serpentis; 3/28 (10.7%) snake adenovirus 1; and 1/28 (3.6%) Ferlavirus genotype C. Stress may have been caused by physical displacement, habitat modification, and noise pollution. These potential stressors (including the presence of remnant harmful chemicals from previous land use and the impacts on this federally threatened species) should be considered further when making restoration or construction decisions.
Collapse
Affiliation(s)
- James E Bogan
- Central Florida Zoo's Orianne Center for Indigo Conservation, 30931 Brantley Branch Road, Eustis, Florida 32736, USA
| | - Bradley M O'Hanlon
- Florida Fish and Wildlife Conservation Commission, 620 S Meridian St., Tallahassee, Florida 32399, USA
| | - David A Steen
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 1105 SW Williston Road, Gainesville, Florida 32601, USA
| | - Terrence Horan
- South Florida Water Management District, 3301 Gun Club Road, West Palm Beach, Florida 33406, USA
| | - Robert Taylor
- South Florida Water Management District, 3301 Gun Club Road, West Palm Beach, Florida 33406, USA
| | - Alexandra K Mason
- Central Florida Zoo's Orianne Center for Indigo Conservation, 30931 Brantley Branch Road, Eustis, Florida 32736, USA
| | - Timothy Breen
- United States Fish and Wildlife Service, Florida Ecological Services Field Office, 1339 20th Street, Vero Beach, Florida 32960, USA
| | - Holly Andreotta
- South Florida Water Management District, 3301 Gun Club Road, West Palm Beach, Florida 33406, USA
| | - Bryan Cornelius
- South Florida Water Management District, 3301 Gun Club Road, West Palm Beach, Florida 33406, USA
| | - April Childress
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Michele Elmore
- United States Fish and Wildlife Service, Georgia Ecological Services, PO Box 52560, Fort Benning, Georgia 31995, USA
| |
Collapse
|
3
|
Oliva-Vidal P, Martínez JM, Sánchez-Barbudo IS, Camarero PR, Colomer MÀ, Margalida A, Mateo R. Second-generation anticoagulant rodenticides in the blood of obligate and facultative European avian scavengers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120385. [PMID: 36257565 DOI: 10.1016/j.envpol.2022.120385] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The widespread use of second-generation anticoagulant rodenticides (SGARs) and their high persistence in animal tissues has led to these compounds becoming ubiquitous in rodent-predator-scavenger food webs. Exposure to SGARs has usually been investigated in wildlife species found dead, and despite growing evidence of the potential risk of secondary poisoning of predators and scavengers, the current worldwide exposure of free-living scavenging birds to SGARs remains scarcely investigated. We present the first active monitoring of blood SGAR concentrations and prevalence in the four European obligate (i.e., vultures) and facultative (red and black kites) avian scavengers in NE Spain. We analysed 261 free-living birds and detected SGARs in 39.1% (n = 102) of individuals. Both SGAR prevalence and concentrations (ΣSGARs) were related to the age and foraging behaviour of the species studied. Black kites showed the highest prevalence (100%), followed by red kites (66.7%), Egyptian (64.2%), bearded (20.9%), griffon (16.9%) and cinereous (6.3%) vultures. Overall, both the prevalence and average ΣSGARs were higher in non-nestlings than nestlings, and in species such as kites and Egyptian vultures foraging in anthropic landscapes (e.g., landfill sites and livestock farms) and exploiting small/medium-sized carrions. Brodifacoum was most prevalent (28.8%), followed by difenacoum (16.1%), flocoumafen (12.3%) and bromadiolone (7.3%). In SGAR-positive birds, the ΣSGAR (mean ± SE) was 7.52 ± 0.95 ng mL-1; the highest level detected being 53.50 ng mL-1. The most abundant diastereomer forms were trans-bromadiolone and flocoumafen, and cis-brodifacoum and difenacoum, showing that lower impact formulations could reduce secondary exposures of non-target species. Our findings suggest that SGARs can bioaccumulate in scavenging birds, showing the potential risk to avian scavenging guilds in Europe and elsewhere. We highlight the need for further studies on the potential adverse effects associated with concentrations of SGARSs in the blood to better interpret active monitoring studies of free-living birds.
Collapse
Affiliation(s)
- Pilar Oliva-Vidal
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain; Department of Animal Science, Faculty of Life Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198, Spain.
| | - José María Martínez
- Gobierno de Aragón, Subdirección General de Desarrollo Rural y Sostenibilidad, Departamento Medio Ambiente, C/ General Lasheras 8, E-22003 Huesca, Spain
| | - Inés S Sánchez-Barbudo
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain
| | - Pablo R Camarero
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain
| | - Mª Àngels Colomer
- Department of Mathematics, Faculty of Life Sciences and Engineering, University of Lleida, Avda. Alcalde Rovira Roure, 191, 25198, Spain
| | - Antoni Margalida
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain; Pyrenean Institute of Ecology (CSIC), Avda. Nuestra Señora de la Victoria, 12, 22700, Jaca, Spain
| | - Rafael Mateo
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain
| |
Collapse
|