1
|
Xue Y, Yang S, Sun W, Tan H, Lin K, Peng L, Wang Z, Zhang J. Approaching expert-level accuracy for differentiating ACL tear types on MRI with deep learning. Sci Rep 2024; 14:938. [PMID: 38195977 PMCID: PMC10776725 DOI: 10.1038/s41598-024-51666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024] Open
Abstract
Treatment for anterior cruciate ligament (ACL) tears depends on the condition of the ligament. We aimed to identify different tear statuses from preoperative MRI using deep learning-based radiomics with sex and age. We reviewed 862 patients with preoperative MRI scans reflecting ACL status from Hunan Provincial People's Hospital. Based on sagittal proton density-weighted images, a fully automated approach was developed that consisted of a deep learning model for segmenting ACL tissue (ACL-DNet) and a deep learning-based recognizer for ligament status classification (ACL-SNet). The efficacy of the proposed approach was evaluated by using the sensitivity, specificity and area under the receiver operating characteristic curve (AUC) and compared with that of a group of three orthopedists in the holdout test set. The ACL-DNet model yielded a Dice coefficient of 98% ± 6% on the MRI datasets. Our proposed classification model yielded a sensitivity of 97% and a specificity of 97%. In comparison, the sensitivity of alternative models ranged from 84 to 90%, while the specificity was between 86 and 92%. The AUC of the ACL-SNet model was 99%, demonstrating high overall diagnostic accuracy. The diagnostic performance of the clinical experts as reflected in the AUC was 96%, 92% and 88%, respectively. The fully automated model shows potential as a highly reliable and reproducible tool that allows orthopedists to noninvasively identify the ACL status and may aid in optimizing different techniques, such as ACL remnant preservation, for ACL reconstruction.
Collapse
Affiliation(s)
- Yang Xue
- School of Computer Science, Hunan First Normal University, Changsha, 410205, China
- Hunan Provincial Key Laboratory of Information Technology for Basic Education, Changsha, 410205, China
| | - Shu Yang
- Department of Orthopaedic, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410002, China
| | - Wenjie Sun
- Department of Radiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410002, China
| | - Hui Tan
- Department of Radiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410002, China
| | - Kaibin Lin
- School of Computer Science, Hunan First Normal University, Changsha, 410205, China
- Hunan Provincial Key Laboratory of Information Technology for Basic Education, Changsha, 410205, China
| | - Li Peng
- School of Computer Science, Hunan First Normal University, Changsha, 410205, China
- Hunan Provincial Key Laboratory of Information Technology for Basic Education, Changsha, 410205, China
| | - Zheng Wang
- School of Computer Science, Hunan First Normal University, Changsha, 410205, China.
- Hunan Provincial Key Laboratory of Information Technology for Basic Education, Changsha, 410205, China.
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, 518020, Guangdong, China.
- Department of Geriatrics, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
2
|
Kaya O, Taşcı B. A Pyramid Deep Feature Extraction Model for the Automatic Classification of Upper Extremity Fractures. Diagnostics (Basel) 2023; 13:3317. [PMID: 37958217 PMCID: PMC10650457 DOI: 10.3390/diagnostics13213317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The musculoskeletal system plays a crucial role in our daily lives, and the accurate diagnosis of musculoskeletal issues is essential for providing effective healthcare. However, the classification of musculoskeletal system radiographs is a complex task, requiring both accuracy and efficiency. This study addresses this challenge by introducing and evaluating a pyramid deep feature extraction model for the automatic classification of musculoskeletal system radiographs. The primary goal of this research is to develop a reliable and efficient solution to classify different upper extremity regions in musculoskeletal radiographs. To achieve this goal, we conducted an end-to-end training process using a pre-trained EfficientNet B0 convolutional neural network (CNN) model. This model was trained on a dataset of radiographic images that were divided into patches of various sizes, including 224 × 224, 112 × 112, 56 × 56, and 28 × 28. From the trained CNN model, we extracted a total of 85,000 features. These features were subsequently subjected to selection using the neighborhood component analysis (NCA) feature selection algorithm and then classified using a support vector machine (SVM). The results of our experiments are highly promising. The proposed model successfully classified various upper extremity regions with high accuracy rates: 92.04% for the elbow region, 91.19% for the finger region, 92.11% for the forearm region, 91.34% for the hand region, 91.35% for the humerus region, 89.49% for the shoulder region, and 92.63% for the wrist region. These results demonstrate the effectiveness of our deep feature extraction model as a potential auxiliary tool in the automatic analysis of musculoskeletal system radiographs. By automating the classification of musculoskeletal radiographs, our model has the potential to significantly accelerate clinical diagnostic processes and provide more precise results. This advancement in medical imaging technology can ultimately lead to better healthcare services for patients. However, future studies are crucial to further refine and test the model for practical clinical applications, ensuring that it integrates seamlessly into medical diagnosis and treatment processes, thus improving the overall quality of healthcare services.
Collapse
Affiliation(s)
- Oğuz Kaya
- Department of Orthopedics and Traumatology, Elazig Fethi Sekin City Hospital, Elazig 23280, Turkey
| | - Burak Taşcı
- Vocational School of Technical Sciences, Firat University, Elazig 23119, Turkey
| |
Collapse
|