1
|
Liu Q, Song Q, Yu Y, Shi Y, Lu M, Chen Y, Tan L. Whole chloroplast genome sequence and phylogenetic analysis of Calanthe discolor (Orchidaceae). Mitochondrial DNA B Resour 2024; 9:1345-1349. [PMID: 39377034 PMCID: PMC11457340 DOI: 10.1080/23802359.2024.2411376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
The orchid Calanthe discolor, which has high ornamental and medicinal value, is mainly distributed in Zhejiang, Jiangsu, and southeast Hubei Provinces of China, as well as in Japan and the southern Korean peninsula. In this study, the whole chloroplast genome sequence of C. discolor was first assembled using high-throughput Illumina paired-end technology, providing data to evaluate the evolution of this species. The C. discolor chloroplast genome was158,286 bp long, including a large single-copy region of 87,095 bp, a small single-copy region of 18,407 bp, and two copies of a repeat region (26,392-bp each). The overall G + C content was 41.2%. A total of 133 genes were predicted from the genome, including 87 protein-coding genes, eight ribosomal RNAs, 38 transfer RNAs. Phylogenetic analysis indicated a close relationship between C. discolor and C. bicolor.
Collapse
Affiliation(s)
- Qiuping Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Qin Song
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yan Yu
- Guizhou Tobacco Company, Duyun, China
| | - Yiming Shi
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Minghui Lu
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Leitao Tan
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|
2
|
Li T, Zhang S, Deng Y, Li Y. Comparative Analysis of Chloroplast Genomes for the Genus Manglietia Blume (Magnoliaceae): Molecular Structure and Phylogenetic Evolution. Genes (Basel) 2024; 15:406. [PMID: 38674341 PMCID: PMC11048997 DOI: 10.3390/genes15040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Manglietia Blume, belonging to the Magnoliaceae family and mainly distributed in tropical and subtropical regions of Asia, has great scientific and economic value. In this study, we employed next-generation sequencing followed by de novo assembly to investigate the adaptive evolution of Manglietia using plastid genetic information. We newly sequenced the complete or nearly complete plastomes of four Manglietia species (Manglietia aromatica, Manglietia calcarea, Manglietia kwangtungensis, and Manglietia glauca) and conducted comparative analysis with seventeen published plastomes to examine the evolutionary pattern within this genus. The plastomes of these five newly sequenced Manglietia species range from 157,093 bp (M. calcarea2) to 160,493 bp (M. kwangtungensis), all exhibiting circular structures when mapped. Nucleotide diversity was observed across the plastomes, leading us to identify 13 mutational hotspot regions, comprising eight intergenic spacer regions and five gene regions. Our phylogenetic analyses based on 77 protein-coding genes generated phylogenetic relationships with high support and resolution for Manglietia. This genus can be divided into three clades, and the previously proposed infrageneric classifications are not supported by our studies. Furthermore, the close affinity between M. aromatica and M. calcarea is supported by the present work, and further studies are necessary to conclude the taxonomic treatment for the latter. These results provide resources for the comparative plastome, breeding, and plastid genetic engineering of Magnoliaceae and flowering plants.
Collapse
Affiliation(s)
- Tingzhang Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (T.L.); (S.Z.)
| | - Shuangyu Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (T.L.); (S.Z.)
| | - Yunfei Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuling Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (T.L.); (S.Z.)
| |
Collapse
|
3
|
Zhang SY, Yan HF, Wei L, Liu TJ, Chen L, Hao G, Wu X, Zhang QL. Plastid genome and its phylogenetic implications of Asiatic Spiraea (Rosaceae). BMC PLANT BIOLOGY 2024; 24:23. [PMID: 38166728 PMCID: PMC10763413 DOI: 10.1186/s12870-023-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Spiraea L. is a genus comprising approximately 90 species that are distributed throughout the northern temperate regions. China is recognized as the center of species diversity for this genus, hosting more than 70 species, including 47 endemic species. While Spiraea is well-known for its ornamental value, its taxonomic and phylogenetic studies have been insufficient. RESULTS In this study, we conducted sequencing and assembly of the plastid genomes (plastomes) of 34 Asiatic Spiraea accessions (representing 27 Asiatic Spiraea species) from China and neighboring regions. The Spiraea plastid genome exhibits typical quadripartite structures and encodes 113-114 genes, including 78-79 protein-coding genes (PCGs), 30 tRNA genes, and 4 rRNA genes. Linear regression analysis revealed a significant correlation between genome size and the length of the SC region. By the sliding windows method, we identified several hypervariable hotspots within the Spiraea plastome, all of which were localized in the SC regions. Our phylogenomic analysis successfully established a robust phylogenetic framework for Spiraea, but it did not support the current defined section boundaries. Additionally, we discovered that the genus underwent diversification after the Early Oligocene (~ 30 Ma), followed by a rapid speciation process during the Pliocene and Pleistocene periods. CONCLUSIONS The plastomes of Spiraea provided us invaluable insights into its phylogenetic relationships and evolutionary history. In conjunction with plastome data, further investigations utilizing other genomes, such as the nuclear genome, are urgently needed to enhance our understanding of the evolutionary history of this genus.
Collapse
Affiliation(s)
- Shu-Yan Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lei Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Tong-Jian Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lin Chen
- Hangzhou Xixi National Wetland Park Service Center (Hangzhou Xixi National Wetland Park Ecology & Culture Research Center), Hangzhou, 310013, China
| | - Gang Hao
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xing Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Qiao-Ling Zhang
- Hangzhou Xixi National Wetland Park Service Center (Hangzhou Xixi National Wetland Park Ecology & Culture Research Center), Hangzhou, 310013, China.
| |
Collapse
|
4
|
Zhou CY, Lin WJ, Li R, Wu Y, Liu ZJ, Li MH. Characterization of Angraecum (Angraecinae, Orchidaceae) Plastomes and Utility of Sequence Variability Hotspots. Int J Mol Sci 2023; 25:184. [PMID: 38203355 PMCID: PMC10779182 DOI: 10.3390/ijms25010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Angraecum, commonly known as Darwin's orchid, is the largest genus of Angraecinae (Orchidaceae). This genus exhibits a high morphological diversity, making it as a good candidate for macroevolutionary studies. In this study, four complete plastomes of Angraecum were firstly reported and the potential variability hotspots were explored. The plastomes possessed the typical quadripartite structure and ranged from 150,743 to 151,818 base pair (bp), with a guanine-cytosine (GC) content of 36.6-36.9%. The plastomes all contained 120 genes, consisting of 74 protein-coding genes (CDS), 38 transfer RNA (tRNA) genes and 8 ribosomal RNA (rRNA) genes; all ndh genes were pseudogenized or lost. A total of 30 to 46 long repeats and 55 to 63 SSRs were identified. Relative synonymous codon usage (RSCU) analysis indicated a high degree of conservation in codon usage bias. The Ka/Ks ratios of most genes were lower than 1, indicating that they have undergone purifying selection. Based on the ranking of Pi (nucleotide diversity) values, five regions (trnSGCU-trnGGCC, ycf1-trnNGGU, trnNGUU-rpl32, psaC-ndhE and trnSGCU-trnGGCC) and five protein-coding genes (rpl32, rps16, psbK, rps8, and ycf1) were identified. The consistent and robust phylogenetic relationships of Angraecum were established based on a total of 40 plastomes from the Epidendroideae subfamily. The genus Angraecum was strongly supported as a monophyletic group and sister to Aeridinae. Our study provides an ideal system for investigating molecular identification, plastome evolution and DNA barcoding for Angraecum.
Collapse
Affiliation(s)
- Cheng-Yuan Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
| | - Wen-Jun Lin
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Ruyi Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
| | - Yuhan Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
5
|
Chen XH, Ding LN, Zong XY, Xu H, Wang WB, Ding R, Qu B. The complete chloroplast genome sequences of four Liparis species (Orchidaceae) and phylogenetic implications. Gene 2023; 888:147760. [PMID: 37661026 DOI: 10.1016/j.gene.2023.147760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Liparis Richard (Malaxideae, Epidendroideae) is a large and diverse genus of the family Orchidaceae, the taxonomy of which is complicated and controversial. In this study, we sequenced, assembled and analyzed four complete chloroplast genomes of Liparis species including L. kumokiri, L. makinoana, L. pauliana, and L. viridiflora, and evaluated their phylogenetic relationships with related species for the first time. These four chloroplast genomes (size range 153,095 to 158,239 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 83,533-86,752 bp), a small single copy (SSC, 17,938-18,156 bp) and a pair of inverted repeats (IRs, 26,421-26,933 bp). The genomes contain 133 genes, including 87 protein coding genes, 38 tRNAs and 8 rRNA genes. The genome arrangements, gene contents, gene order, long repeats and simple sequence repeats were similar with small differences observed among these four chloroplast genomes. Five highly variable regions including ycf1, ndhA, ndhF, trnQ and trnK were identified from the comparative analysis with other nine related Liparis species, which had the potential to be used as DNA markers for species identification and phylogenetic studies of Liparis species. Phylogenetic analysis based on the complete chloroplast genome sequences strongly supported the polyphyly of Liparis and its further division into three branches. These results provided valuable information to illustrate the complicated taxonomy, phylogeny and evolution process of the Liparis genus.
Collapse
Affiliation(s)
- Xu-Hui Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Li-Na Ding
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Xiao-Yan Zong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Hua Xu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, PR China
| | - Wei-Bin Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Rui Ding
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China.
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China.
| |
Collapse
|
6
|
Krawczyk K, Paukszto Ł, Maździarz M, Sawicki J. The low level of plastome differentiation observed in some lineages of Poales hinders molecular species identification. FRONTIERS IN PLANT SCIENCE 2023; 14:1275377. [PMID: 38143577 PMCID: PMC10739336 DOI: 10.3389/fpls.2023.1275377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
Chloroplast genomes are a source of information successfully used in various fields of plant genetics, including molecular species identification. However, recent studies indicate an extremely low level of interspecific variability in the plastomes of some taxonomic groups of plants, including the genus Stipa L., which is a representative of the grass family. In this study we aimed to analyze the level of chloroplast genome diversity within particular genera as well as the effectiveness of identifying plant species in the Poaceae family and the other representatives of Poales order. Analysis of complete plastid genome alignments created for 96 genera comprising 793 species and 1707 specimens obtained from the GenBank database allowed defining and categorizing molecular diagnostic characters distinguishing the analyzed species from the other representatives of the genus. The results also demonstrate which species do not have any species-specific mutations, thereby they cannot be identified on the basis of differences between the complete chloroplast genomes. Our research showed a huge diversity of the analyzed species in terms of the number of molecular diagnostic characters and indicated which genera pose a particular challenge in terms of molecular species identification. The results show that a very low level of genetic diversity between plastomes is not uncommon in Poales. This is the first extensive research on super-barcoding that tests this method on a large data set and illustrates its effectiveness against the background of phylogenetic relationships.
Collapse
Affiliation(s)
- Katarzyna Krawczyk
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | | | | |
Collapse
|
7
|
Liu DK, Zhou CY, Tu XD, Zhao Z, Chen JL, Gao XY, Xu SW, Zeng MY, Ma L, Ahmad S, Li MH, Lan S, Liu ZJ. Comparative and phylogenetic analysis of Chiloschista (Orchidaceae) species and DNA barcoding investigation based on plastid genomes. BMC Genomics 2023; 24:749. [PMID: 38057701 DOI: 10.1186/s12864-023-09847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Chiloschista (Orchidaceae, Aeridinae) is an epiphytic leafless orchid that is mainly distributed in tropical or subtropical forest canopies. This rare and threatened orchid lacks molecular resources for phylogenetic and barcoding analysis. Therefore, we sequenced and assembled seven complete plastomes of Chiloschista to analyse the plastome characteristics and phylogenetic relationships and conduct a barcoding investigation. RESULTS We are the first to publish seven Chiloschista plastomes, which possessed the typical quadripartite structure and ranged from 143,233 bp to 145,463 bp in size. The plastomes all contained 120 genes, consisting of 74 protein-coding genes, 38 tRNA genes and eight rRNA genes. The ndh genes were pseudogenes or lost in the genus, and the genes petG and psbF were under positive selection. The seven Chiloschista plastomes displayed stable plastome structures with no large inversions or rearrangements. A total of 14 small inversions (SIs) were identified in the seven Chiloschista plastomes but were all similar within the genus. Six noncoding mutational hotspots (trnNGUU-rpl32 > rpoB-trnCGCA > psbK-psbI > psaC-rps15 > trnEUUC-trnTGGU > accD-psaI) and five coding sequences (ycf1 > rps15 > matK > psbK > ccsA) were selected as potential barcodes based on nucleotide diversity and species discrimination analysis, which suggested that the potential barcode ycf1 was most suitable for species discrimination. A total of 47-56 SSRs and 11-14 long repeats (> 20 bp) were identified in Chiloschista plastomes, and they were mostly located in the large single copy intergenic region. Phylogenetic analysis indicated that Chiloschista was monophyletic. It was clustered with Phalaenopsis and formed the basic clade of the subtribe Aeridinae with a moderate support value. The results also showed that seven Chiloschista species were divided into three major clades with full support. CONCLUSION This study was the first to analyse the plastome characteristics of the genus Chiloschista in Orchidaceae, and the results showed that Chiloschista plastomes have conserved plastome structures. Based on the plastome hotspots of nucleotide diversity, several genes and noncoding regions are suitable for phylogenetic and population studies. Chiloschista may provide an ideal system to investigate the dynamics of plastome evolution and DNA barcoding investigation for orchid studies.
Collapse
Affiliation(s)
- Ding-Kun Liu
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cheng-Yuan Zhou
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiong-De Tu
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhuang Zhao
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jin-Liao Chen
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu-Yong Gao
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shao-Wei Xu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meng-Yao Zeng
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liang Ma
- Fujian Health College, Fuzhou, 350101, Fujian, China
| | - Sagheer Ahmad
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ming-He Li
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Siren Lan
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhong-Jian Liu
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
8
|
Islam MS, Chekhovskiy K, Saha MC. Dig up tall fescue plastid genomes for the identification of morphotype-specific DNA variants. BMC Genomics 2023; 24:586. [PMID: 37789301 PMCID: PMC10546690 DOI: 10.1186/s12864-023-09631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Tall fescue (Festuca arundinacea Schreb.) is an important cool-season perennial grass species. Hexaploid tall fescue has three distinct morphotypes used either as forage or turf purposes. Its chloroplast genome is conserved due to it being maternally inherited to the next generation progenies. To identify morphotype-specific DNA markers and the genetic variations, plastid genomes of all three tall fescue morphotypes, i.e., Continental cv. Texoma MaxQ II, Rhizomatous cv. Torpedo, and Mediterranean cv. Resolute, have been sequenced using Illumina MiSeq sequencing platform. RESULTS The plastid genomes of Continental-, Rhizomatous-, and Mediterranean tall fescue were assembled into circular master molecules of 135,283 bp, 135,336 bp, and 135,324 bp, respectively. The tall fescue plastid genome of all morphotypes contained 77 protein-coding, 20 tRNAs, four rRNAs, two pseudo protein-coding, and three hypothetical protein-coding genes. We identified 630 SNPs and 124 InDels between Continental and Mediterranean, 62 SNPs and 20 InDels between Continental and Rhizomatous, and 635 SNPs and 123 InDels between Rhizomatous and Mediterranean tall fescue. Only four InDels in four genes (ccsA, rps18, accD, and ndhH-p) were identified, which discriminated Continental and Rhizomatous plastid genomes from the Mediterranean plastid genome. Here, we identified and reported eight InDel markers (NRITCHL18, NRITCHL35, NRITCHL43, NRITCHL65, NRITCHL72, NRITCHL101, NRITCHL104, and NRITCHL110) from the intergenic regions that can successfully discriminate tall fescue morphotypes. Divergence time estimation revealed that Mediterranean tall fescue evolved approximately 7.09 Mya, whereas the divergence between Continental- and Rhizomatous tall fescue occurred about 0.6 Mya. CONCLUSIONS To our knowledge, this is the first report of the assembled plastid genomes of Rhizomatous and Mediterranean tall fescue. Our results will help to identify tall fescue morphotypes at the time of pre-breeding and will contribute to the development of lawn and forage types of commercial varieties.
Collapse
Affiliation(s)
- Md Shofiqul Islam
- Grass Genomics, Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA.
- Genetics Laboratory, Indiana Crop Improvement Association, 7700 Stockwell Road, Lafayette, IN, 47909, USA.
- Department of Agronomy, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN, 47906, USA.
| | - Konstantin Chekhovskiy
- Grass Genomics, Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Malay C Saha
- Grass Genomics, Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| |
Collapse
|
9
|
Zhou CY, Zeng MY, Gao X, Zhao Z, Li R, Wu Y, Liu ZJ, Zhang D, Li MH. Characteristics and Comparative Analysis of Seven Complete Plastomes of Trichoglottis s.l. (Aeridinae, Orchidaceae). Int J Mol Sci 2023; 24:14544. [PMID: 37833995 PMCID: PMC10572978 DOI: 10.3390/ijms241914544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Trichoglottis exhibits a range of rich variations in colors and shapes of flower and is a valuable ornamental orchid genus. The genus Trichoglottis has been expanded by the inclusion of Staurochilus, but this Trichoglottis sensu lato (s.l.) was recovered as a non-monophyletic genus based on molecular sequences from one or a few DNA regions. Here, we present phylogenomic data sets, incorporating complete plastome sequences from seven species (including five species sequenced in this study) of Trichoglottis s.l. (including two species formerly treated as Staurochilus), to compare plastome structure and to reconstruct the phylogenetic relationships of this genus. The seven plastomes possessed the typical quadripartite structure of angiosperms and ranged from 149,402 bp to 149,841 bp with a GC content of 36.6-36.7%. These plastomes contain 120 genes, which comprise 74 protein-coding genes, 38 tRNA genes, and 8 rRNA genes, all ndh genes were pseudogenized or lost. A total of 98 (T. philippinensis) to 134 (T. ionosma) SSRs and 33 (T. subviolacea) to 46 (T. ionosma) long repeats were detected. The consistent and robust phylogenetic relationships of Trichoglottis were established using a total of 25 plastid genomes from the Aeridinae subtribe. The genus Trichoglottis s.l. was strongly supported as a monophyletic group, and two species formerly treated as Staurochilus were revealed as successively basal lineages. In addition, five mutational hotspots (trnNGUU-rpl32, trnLUAA, trnSGCU-trnGUCC, rbcL-accD, and trnTGGU-psbD) were identified based on the ranking of PI values. Our research indicates that plastome data is a valuable source for molecular identification and evolutionary studies of Trichoglottis and its related genera.
Collapse
Affiliation(s)
- Cheng-Yuan Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Meng-Yao Zeng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Xuyong Gao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Zhuang Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Ruyi Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Yuhan Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
10
|
Jin G, Li W, Song F, Yang L, Wen Z, Feng Y. Comparative analysis of complete Artemisia subgenus Seriphidium (Asteraceae: Anthemideae) chloroplast genomes: insights into structural divergence and phylogenetic relationships. BMC PLANT BIOLOGY 2023; 23:136. [PMID: 36899296 PMCID: PMC9999589 DOI: 10.1186/s12870-023-04113-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Artemisia subg. Seriphidium, one of the most species-diverse groups within Artemisia, grows mainly in arid or semi-arid regions in temperate climates. Some members have considerable medicinal, ecological, and economic value. Previous studies on this subgenus have been limited by a dearth of genetic information and inadequate sampling, hampering our understanding of their phylogenetics and evolutionary history. We therefore sequenced and compared the chloroplast genomes of this subgenus, and evaluated their phylogenetic relationships. RESULTS We newly sequenced 18 chloroplast genomes of 16 subg. Seriphidium species and compared them with one previously published taxon. The chloroplast genomes, at 150,586-151,256 bp in length, comprised 133 genes, including 87 protein-coding genes, 37 tRNA genes, 8 rRNA genes, and one pseudogene, with GC content of 37.40-37.46%. Comparative analysis showed that genomic structures and gene order were relatively conserved, with only some variation in IR borders. A total of 2203 repeats (1385 SSRs and 818 LDRs) and 8 highly variable loci (trnK - rps16, trnE - ropB, trnT, ndhC - trnV, ndhF, rpl32 - trnL, ndhG - ndhI and ycf1) were detected in subg. Seriphidium chloroplast genomes. Phylogenetic analysis of the whole chloroplast genomes based on maximum likelihood and Bayesian inference analyses resolved subg. Seriphidium as polyphyletic, and segregated into two main clades, with the monospecific sect. Minchunensa embedded within sect. Seriphidium, suggesting that the whole chloroplast genomes can be used as molecular markers to infer the interspecific relationship of subg. Seriphidium taxa. CONCLUSION Our findings reveal inconsistencies between the molecular phylogeny and traditional taxonomy of the subg. Seriphidium and provide new insights into the evolutionary development of this complex taxon. Meanwhile, the whole chloroplast genomes with sufficiently polymorphic can be used as superbarcodes to resolve interspecific relationships in subg. Seriphidium.
Collapse
Affiliation(s)
- Guangzhao Jin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Wenjun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Feng Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lei Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Zhibin Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Ying Feng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
11
|
Krawczyk K, Myszczyński K, Nobis M, Sawicki J. Insights into adaptive evolution of plastomes in Stipa L. (Poaceae). BMC PLANT BIOLOGY 2022; 22:525. [PMID: 36372890 PMCID: PMC9661759 DOI: 10.1186/s12870-022-03923-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/01/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND The study presents results of research on the evolution of plastid genomes in Stipa L. which is a large genus of the Poaceae family, comprising species diverse in terms of geographic distribution, growing under highly variated habitat conditions. Complete plastome sequences of 43 taxa from Stipeae and Ampelodesmae tribes were analyzed for the variability of the coding regions against the background of phylogenetic relationships within the genus Stipa. The research hypothesis put forward in our research was that some of coding regions are affected by a selection pressure differentiated between individual phylogenetic lines of Stipa, potentially reducing the phylogenetic informativeness of these CDS. The study aimed to answer the question, which genes evolve in Stipa most rapidly and what kind of changes in the properties of encoded amino acids this entails. Another goal of this research was to find out whether individual genes are affected by positive selection and finally, whether selective pressure is uniform within the genus or does it vary between particular evolutionary lines within the genus. RESULTS Results of our study proved the presence of selective pressure in 11 genes: ccsA, matK, ndhC, ndhF, ndhK, rbcL, rpoA rpoC1, rpoC2, rps8 and rps11. For the first time the effect of positive selection on the rps8, rps11, and ndhK genes was documented in grasses. The varied pace of evolution, different intensity and effects of selective pressure have been demonstrated between particular phylogenetic lines of the genus tested. CONCLUSIONS Positive selection in plastid genome in Stipa mostly affects photosynthetic genes. The potential strongest adaptive pressure was observed in the rbcL gene, especially in the oldest evolutionary group comprising Central Asian high-mountain species: S. basiplumosa, S. klimesii, S. penicillata and S. purpurea, where adaptive pressure probably affected the amino acids directly related to the efficiency of CO2 assimilation.
Collapse
Affiliation(s)
- Katarzyna Krawczyk
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727, Olsztyn, Poland.
| | - Kamil Myszczyński
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - Jakub Sawicki
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727, Olsztyn, Poland
| |
Collapse
|
12
|
Sandoval-Padilla I, Zamora-Tavares MDP, Ruiz-Sánchez E, Pérez-Alquicira J, Vargas-Ponce O. Characterization of the plastome of Physaliscordata and comparative analysis of eight species of Physalis sensu stricto. PHYTOKEYS 2022; 210:109-134. [PMID: 36760406 PMCID: PMC9836641 DOI: 10.3897/phytokeys.210.85668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/07/2022] [Indexed: 06/18/2023]
Abstract
In this study, we sequenced, assembled, and annotated the plastome of Physaliscordata Mill. and compared it with seven species of the genus Physalis sensu stricto. Sequencing, annotating, and comparing plastomes allow us to understand the evolutionary mechanisms associated with physiological functions, select possible molecular markers, and identify the types of selection that have acted in different regions of the genome. The plastome of P.cordata is 157,000 bp long and presents the typical quadripartite structure with a large single-copy (LSC) region of 87,267 bp and a small single-copy (SSC) region of 18,501 bp, which are separated by two inverted repeat (IRs) regions of 25,616 bp each. These values are similar to those found in the other species, except for P.angulata L. and P.pruinosa L., which presented an expansion of the LSC region and a contraction of the IR regions. The plastome in all Physalis species studied shows variation in the boundary of the regions with three distinct types, the percentage of the sequence identity between coding and non-coding regions, and the number of repetitive regions and microsatellites. Four genes and 10 intergenic regions show promise as molecular markers and eight genes were under positive selection. The maximum likelihood analysis showed that the plastome is a good source of information for phylogenetic inference in the genus, given the high support values and absence of polytomies. In the Physalis plastomes analyzed here, the differences found, the positive selection of genes, and the phylogenetic relationships do not show trends that correspond to the biological or ecological characteristics of the species studied.
Collapse
Affiliation(s)
- Isaac Sandoval-Padilla
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| | - María del Pilar Zamora-Tavares
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| | - Eduardo Ruiz-Sánchez
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| | - Jessica Pérez-Alquicira
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
- Laboratorio Nacional de Identificación y Caracterización Vegetal A(LaniVeg), Consejo Nacional de Ciencia y Tecnología (CONACyT), Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoCONACYTMexico CityMexico
| | - Ofelia Vargas-Ponce
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| |
Collapse
|
13
|
Nanjala C, Wanga VO, Odago W, Mutinda ES, Waswa EN, Oulo MA, Mkala EM, Kuja J, Yang JX, Dong X, Hu GW, Wang QF. Plastome structure of 8 Calanthe s.l. species (Orchidaceae): comparative genomics, phylogenetic analysis. BMC PLANT BIOLOGY 2022; 22:387. [DOI: https:/doi.org/10.1186/s12870-022-03736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 06/21/2023]
Abstract
Abstract
Background
Calanthe (Epidendroideae, Orchidaceae) is a pantropical genus distributed in Asia and Africa. Its species are of great importance in terms of economic, ornamental and medicinal values. However, due to limited and confusing delimitation characters, the taxonomy of the Calanthe alliance (Calanthe, Cephalantheropsis, and Phaius) has not been sufficiently resolved. Additionally, the limited genomic information has shown incongruences in its systematics and phylogeny. In this study, we used illumina platform sequencing, performed a de novo assembly, and did a comparative analysis of 8 Calanthe group species' plastomes: 6 Calanthe and 2 Phaius species. Phylogenetic analyses were used to reconstruct the relationships of the species as well as with other species of the family Orchidaceae.
Results
The complete plastomes of the Calanthe group species have a quadripartite structure with varied sizes ranging between 150,105bp-158,714bp, including a large single-copy region (LSC; 83,364bp- 87,450bp), a small single-copy region (SSC; 16,297bp -18,586bp), and a pair of inverted repeat regions (IRs; 25,222bp - 26,430bp). The overall GC content of these plastomes ranged between 36.6-36.9%. These plastomes encoded 131-134 differential genes, which included 85-88 protein-coding genes, 37-38 tRNA genes, and 8 rRNA genes. Comparative analysis showed no significant variations in terms of their sequences, gene content, gene order, sequence repeats and the GC content hence highly conserved. However, some genes were lost in C. delavayi (P. delavayi), including ndhC, ndhF, and ndhK genes. Compared to the coding regions, the non-coding regions had more sequence repeats hence important for species DNA barcoding. Phylogenetic analysis revealed a paraphyletic relationship in the Calanthe group, and confirmed the position of Phaius delavayi in the genus Calanthe as opposed to its previous placement in Phaius.
Conclusion
This study provides a report on the complete plastomes of 6 Calanthe and 2 Phaius species and elucidates the structural characteristics of the plastomes. It also highlights the power of plastome data to resolve phylogenetic relationships and clarifies taxonomic disputes among closely related species to improve our understanding of their systematics and evolution. Furthermore, it also provides valuable genetic resources and a basis for studying evolutionary relationships and population genetics among orchid species.
Collapse
|
14
|
Nanjala C, Wanga VO, Odago W, Mutinda ES, Waswa EN, Oulo MA, Mkala EM, Kuja J, Yang JX, Dong X, Hu GW, Wang QF. Plastome structure of 8 Calanthe s.l. species (Orchidaceae): comparative genomics, phylogenetic analysis. BMC PLANT BIOLOGY 2022; 22:387. [PMID: 35918646 PMCID: PMC9347164 DOI: 10.1186/s12870-022-03736-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Calanthe (Epidendroideae, Orchidaceae) is a pantropical genus distributed in Asia and Africa. Its species are of great importance in terms of economic, ornamental and medicinal values. However, due to limited and confusing delimitation characters, the taxonomy of the Calanthe alliance (Calanthe, Cephalantheropsis, and Phaius) has not been sufficiently resolved. Additionally, the limited genomic information has shown incongruences in its systematics and phylogeny. In this study, we used illumina platform sequencing, performed a de novo assembly, and did a comparative analysis of 8 Calanthe group species' plastomes: 6 Calanthe and 2 Phaius species. Phylogenetic analyses were used to reconstruct the relationships of the species as well as with other species of the family Orchidaceae. RESULTS The complete plastomes of the Calanthe group species have a quadripartite structure with varied sizes ranging between 150,105bp-158,714bp, including a large single-copy region (LSC; 83,364bp- 87,450bp), a small single-copy region (SSC; 16,297bp -18,586bp), and a pair of inverted repeat regions (IRs; 25,222bp - 26,430bp). The overall GC content of these plastomes ranged between 36.6-36.9%. These plastomes encoded 131-134 differential genes, which included 85-88 protein-coding genes, 37-38 tRNA genes, and 8 rRNA genes. Comparative analysis showed no significant variations in terms of their sequences, gene content, gene order, sequence repeats and the GC content hence highly conserved. However, some genes were lost in C. delavayi (P. delavayi), including ndhC, ndhF, and ndhK genes. Compared to the coding regions, the non-coding regions had more sequence repeats hence important for species DNA barcoding. Phylogenetic analysis revealed a paraphyletic relationship in the Calanthe group, and confirmed the position of Phaius delavayi in the genus Calanthe as opposed to its previous placement in Phaius. CONCLUSION This study provides a report on the complete plastomes of 6 Calanthe and 2 Phaius species and elucidates the structural characteristics of the plastomes. It also highlights the power of plastome data to resolve phylogenetic relationships and clarifies taxonomic disputes among closely related species to improve our understanding of their systematics and evolution. Furthermore, it also provides valuable genetic resources and a basis for studying evolutionary relationships and population genetics among orchid species.
Collapse
Affiliation(s)
- Consolata Nanjala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Vincent Okelo Wanga
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Wyclif Odago
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Millicent Akinyi Oulo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jia-Xin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Qing-Feng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|
15
|
Cui N, Chen W, Li X, Wang P. Comparative chloroplast genomes and phylogenetic analyses of Pinellia. Mol Biol Rep 2022; 49:7873-7885. [PMID: 35689783 PMCID: PMC9304046 DOI: 10.1007/s11033-022-07617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
Background Pinellia Tenore (Araceae) is a genus of perennial herbaceous plants, all of which have medicinal value. The chloroplast (cp) genome data of Pinellia are scarce, and the phylogenetic relationship and gene evolution remain unclear. Methods and results We sequenced and annotated the Pinellia pedatisecta cp genome and combined it with previously published genomes for other Pinellia species. We used bioinformatics methods to analyse the genomic structure, repetitive sequences, interspecific variation, divergence hotspots, phylogenetic relationships, divergence time estimation and selective pressure of four Pinellia plastomes. Results showed that the cp genomes of Pinellia varied in length between 168,178 (P. pedatisecta MN046890) and 164,013 bp (P. ternata KR270823). A total of 68–111 SSR loci were identified as candidate molecular markers for further genetic diversity study. Eight mutational hotspot regions were determined, including psbI-trnG-UCC, psbM-rpoB, ndhJ-trnT-UGU, trnP-UGG-trnW-CCA, ndhF-trnN-GUU, ndhG-ndhE, ycf1-rps15 and trnR-ycf1. Gene selection pressure suggested that four genes were subjected to positive selection. Phylogenetic inferences based on the complete cp genomes revealed a sister relationship between Pinellia and Arisaema plants whose divergence was estimated to occur around 22.48 million years ago. All Pinellia species formed a monophyletic evolutionary clade in which P. peltata, rather than P. pedatisecta, earlier diverged, indicating that P. pedatisecta is not the basal taxon of Pinellia but P. peltata may be. Conclusions The cp genomes of Pinellia will provide valuable information for species classification, identification, molecular breeding and evolutionary exploration of the genus Pinellia. Supplementary Information The online version of this article (10.1007/s11033-022-07617-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ning Cui
- Central Laboratory, Shandong Academy of Chinese Medicine, Ji'nan, China
| | - Weixu Chen
- Shang Yao Hua Yu (LinYi) Traditional Chinese Medicine Resources Co., Ltd, Linyi, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ping Wang
- Central Laboratory, Shandong Academy of Chinese Medicine, Ji'nan, China.
| |
Collapse
|
16
|
Jiang H, Tian J, Yang J, Dong X, Zhong Z, Mwachala G, Zhang C, Hu G, Wang Q. Comparative and phylogenetic analyses of six Kenya Polystachya (Orchidaceae) species based on the complete chloroplast genome sequences. BMC PLANT BIOLOGY 2022; 22:177. [PMID: 35387599 PMCID: PMC8985347 DOI: 10.1186/s12870-022-03529-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/14/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Polystachya Hook. is a large pantropical orchid genus (c. 240 species) distributed in Africa, southern Asia and the Americas, with the center of diversity in Africa. Previous studies on species of this genus have not obtained the complete chloroplast genomes, structures and variations. Additionally, the phylogenetic position of the genus in the Orchidaceae is still controversial and uncertain. Therefore, in this study, we sequenced the complete plastomes of six Kenya Polystachya species based on genome skimming, subjected them to comparative genomic analysis, and reconstructed the phylogenetic relationships with other Orchidaceae species. RESULTS The results exhibited that the chloroplast genomes had a typical quadripartite structure with conserved genome arrangement and moderate divergence. The plastomes of the six Polystachya species ranged from 145,484 bp to 149,274 bp in length and had an almost similar GC content of 36.9-37.0%. Gene annotation revealed 106-109 single-copy genes. In addition, 19 genes are duplicated in the inverted regions, and 16 genes each possessd one or more introns. Although no large structural variations were observed among the Polystachya plastomes, about 1 kb inversion was found in Polystachya modesta and all 11 ndh genes in the Polystachya plastomes were lost or pseudogenized. Comparative analysis of the overall sequence identity among six complete chloroplast genomes confirmed that for both coding and non-coding regions in Polystachya, SC regions exhibit higher sequence variation than IRs. Furthermore, there were various amplifications in the IR regions among the six Polystachya species. Most of the protein-coding genes of these species had a high degree of codon preference. We screened out SSRs and found seven relatively highly variable loci. Moreover, 13 genes were discovered with significant positive selection. Phylogenetic analysis showed that the six Polystachya species formed a monophyletic clade and were more closely related to the tribe Vandeae. Phylogenetic relationships of the family Orchidaceae inferred from the 85 chloroplast genome sequences were generally consistent with previous studies and robust. CONCLUSIONS Our study is the initial report of the complete chloroplast genomes of the six Polystachya species, elucidates the structural characteristics of the chloroplast genome of Polystachya, and filters out highly variable sequences that can contribute to the development of DNA markers for use in the study of genetic variability and evolutionary studies in Polystachya. In addition, the phylogenetic results strongly support that the genus of Polystachya is a part of the tribe Vandeae.
Collapse
Affiliation(s)
- Hui Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Tian
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jiaxin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiang Zhong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Geoffrey Mwachala
- East African Herbarium, National Museums of Kenya, P.O. Box 45166, Nairobi, 00100, Kenya
| | - Caifei Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qingfeng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Tu XD, Liu DK, Xu SW, Zhou CY, Gao XY, Zeng MY, Zhang S, Chen JL, Ma L, Zhou Z, Huang MZ, Chen SP, Liu ZJ, Lan SR, Li MH. Plastid phylogenomics improves resolution of phylogenetic relationship in the Cheirostylis and Goodyera clades of Goodyerinae (Orchidoideae, Orchidaceae). Mol Phylogenet Evol 2021; 164:107269. [PMID: 34324956 DOI: 10.1016/j.ympev.2021.107269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
Goodyerinae are one of phylogenetically unresolved groups of Orchidaceae. The lack of resolution achieved through the analyses of previous molecular sequences from one or a few markers has long confounded phylogenetic estimation and generic delimitation. Here, we present large-scale phylogenomic data to compare the plastome structure of the two main clades (Goodyera and Cheirostylis) in this subtribe and further adopt two strategies, combining plastid coding sequences and the whole plastome, to investigate phylogenetic relationships. A total of 46 species in 16 genera were sampled, including 39 species in 15 genera sequenced in this study. The plastomes of heterotrophic species are not drastically reduced in overall size, but display a pattern congruent with a loss of photosynthetic function. The plastomes of autotrophic species ranged from 147 to 165 kb and encoded from 132 to 137 genes. Three unusual structural features were detected: a 1.0-kb inversion in the large single-copy region of Goodyera schlechtendaliana; the loss and/or pseudogenization of ndh genes only in two species, Cheirostylis chinensis and C. montana; and the expansion of inverted repeat regions and contraction of small single-copy region in Hetaeria oblongifolia. Phylogenomic analyses provided improved resolution for phylogenetic relationships. All genera were recovered as monophyletic, except for Goodyera and Hetaeria, which were each recovered as non-monophyletic. Nomenclatural changes are needed until the broader sampling and biparental inherited markers. This study provides a phylogenetic framework of Goodyerinae and insight into plastome evolution of Orchidaceae.
Collapse
Affiliation(s)
- Xiong-De Tu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shao-Wei Xu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng-Yuan Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu-Yong Gao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Yao Zeng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sai Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin-Liao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liang Ma
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuang Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Ming-Zhong Huang
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropic Agricultural Sciences, Haikou 571101, China
| | - Shi-Pin Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si-Ren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|