1
|
Duhan N, Kaur S, Kaundal R. ranchSATdb: A Genome-Wide Simple Sequence Repeat (SSR) Markers Database of Livestock Species for Mutant Germplasm Characterization and Improving Farm Animal Health. Genes (Basel) 2023; 14:1481. [PMID: 37510385 PMCID: PMC10378808 DOI: 10.3390/genes14071481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Microsatellites, also known as simple sequence repeats (SSRs), are polymorphic loci that play an important role in genome research, animal breeding, and disease control. Ranch animals are important components of agricultural landscape. The ranch animal SSR database, ranchSATdb, is a web resource which contains 15,520,263 putative SSR markers. This database provides a comprehensive tool for performing end-to-end marker selection, from SSRs prediction to generating marker primers and their cross-species feasibility, visualization of the resulting markers, and finding similarities between the genomic repeat sequences all in one place without the need to switch between other resources. The user-friendly online interface allows users to browse SSRs by genomic coordinates, repeat motif sequence, chromosome, motif type, motif frequency, and functional annotation. Users may enter their preferred flanking area around the repeat to retrieve the nucleotide sequence, they can investigate SSRs present in the genic or the genes between SSRs, they can generate custom primers, and they can also execute in silico validation of primers using electronic PCR. For customized sequences, an SSR prediction pipeline called miSATminer is also built. New species will be added to this website's database on a regular basis throughout time. To improve animal health via genomic selection, we hope that ranchSATdb will be a useful tool for mapping quantitative trait loci (QTLs) and marker-assisted selection. The web-resource is freely accessible at https://bioinfo.usu.edu/ranchSATdb/.
Collapse
Affiliation(s)
- Naveen Duhan
- Department of Plants, Soils, and Climate/Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Bioinformatics Facility, Center for Integrated BioSystems, Utah State University, Logan, UT 84322, USA
| | - Simardeep Kaur
- Department of Plants, Soils, and Climate/Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- ICAR-Research Complex for North Eastern Hill Region (NEH), Umiam 793103, India
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate/Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Bioinformatics Facility, Center for Integrated BioSystems, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
2
|
Buddhachat K, Paenkaew S, Sripairoj N, Gupta YM, Pradit W, Chomdej S. Bar-cas12a, a novel and rapid method for plant species authentication in case of Phyllanthus amarus Schumach. & Thonn. Sci Rep 2021; 11:20888. [PMID: 34686666 PMCID: PMC8536675 DOI: 10.1038/s41598-021-00006-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022] Open
Abstract
Rapid and accurate species diagnosis accelerates performance in numerous biological fields and associated areas. However, morphology-based species taxonomy/identification might hinder study and lead to ambiguous results. DNA barcodes (Bar) has been employed extensively for plant species identification. Recently, CRISPR-cas system can be applied for diagnostic tool to detect pathogen's DNA based on the collateral activity of cas12a or cas13. Here, we developed barcode-coupled with cas12a assay, "Bar-cas12a" for species authentication using Phyllanthus amarus as a model. The gRNAs were designed from trnL region, namely gRNA-A and gRNA-B. As a result, gRNA-A was highly specific to P. amarus amplified by RPA in contrast to gRNA-B even in contaminated condition. Apart from the large variation of gRNA-A binding in DNA target, cas12a- specific PAM's gRNA-A as TTTN can be found only in P. amarus. PAM site may be recognized one of the potential regions for increasing specificity to authenticate species. In addition, the sensitivity of Bar-cas12a using both gRNAs gave the same detection limit at 0.8 fg and it was 1,000 times more sensitive compared to agarose gel electrophoresis. This approach displayed the accuracy degree of 90% for species authentication. Overall, Bar-cas12a using trnL-designed gRNA offer a highly specific, sensitive, speed, and simple approach for plant species authentication. Therefore, the current method serves as a promising tool for species determination which is likely to be implemented for onsite testing.
Collapse
Affiliation(s)
- Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Suphaporn Paenkaew
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Nattaporn Sripairoj
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Yash Munnalal Gupta
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Waranee Pradit
- Department of Biology, Faculty of Science, Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriwadee Chomdej
- Department of Biology, Faculty of Science, Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
3
|
Kriangwanich W, Buddhachat K, Poommouang A, Chomdej S, Thitaram C, Kaewmong P, Kittiwattanawong K, Nganvongpanit K. Feasibility of melting fingerprint obtained from ISSR-HRM curves for marine mammal species identification. PeerJ 2021; 9:e11689. [PMID: 34239781 PMCID: PMC8237827 DOI: 10.7717/peerj.11689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Currently, species identification of stranded marine mammals mostly relies on morphological features, which has inherent challenges. The use of genetic information for marine mammal species identification remains limited, therefore, new approaches that can contribute to a better monitoring of stranded species are needed. In that context, the ISSR-HRM method we have proposed offers a new approach for marine mammal species identification. Consequently, new approaches need to be developed to identify individuals at the species level. Eight primers of the ISSR markers were chosen for HRM analysis resulting in ranges of accuracy of 56.78–75.50% and 52.14–75.93% in terms of precision, while a degree of sensitivity of more than 80% was recorded when each single primer was used. The ISSR-HRM primer combinations revealed a success rate of 100% in terms of discrimination for all marine mammals included in this study. Furthermore, ISSR-HRM analysis was successfully employed in determining marine mammal discrimination among varying marine mammal species. Thus, ISSR-HRM analysis could serve as an effective alternative tool in the species identification process. This option would offer researchers a heightened level of convenience in terms of its performance and success rate. It would also offer field practice to veterinarians, biologists and other field-related people a greater degree of ease with which they could interpret results when effectively classifying stranded marine mammals. However, further studies with more samples and with a broader geographical scope will be required involving distinct populations to account for the high degree of intraspecific variability in cetaceans and to demonstrate the range of applications of this approach.
Collapse
Affiliation(s)
- Wannapimol Kriangwanich
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Buddhachat
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Anocha Poommouang
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriwadee Chomdej
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchote Thitaram
- Center of Elephant and Wildlife Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Korakot Nganvongpanit
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Poommouang A, Kriangwanich W, Buddhachat K, Brown JL, Piboon P, Chomdej S, Kampuansai J, Mekchay S, Kaewmong P, Kittiwattanawong K, Nganvongpanit K. Genetic diversity in a unique population of dugong (Dugong dugon) along the sea coasts of Thailand. Sci Rep 2021; 11:11624. [PMID: 34078973 PMCID: PMC8172547 DOI: 10.1038/s41598-021-90947-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/12/2021] [Indexed: 11/09/2022] Open
Abstract
Dugong (Dugong dugon) populations have been shrinking globally, due in large part to habitat fragmentation, degradation and ocean pollution, and today are listed as Vulnerable by the IUCN. Thus, determining genetic diversity in the remaining populations is essential for conservation planning and protection. In this study, measures of inter-simple sequence repeat (ISSR) markers and mtDNA D-loop typing were used to evaluate the genetic diversity of 118 dugongs from skin samples of deceased dugongs collected in Thai waters over a 29-year period. Thirteen ISSR primers revealed that dugongs from the Andaman Sea and Gulf of Thailand exhibited more genetic variation in the first 12 years of the study (1990-2002) compared to the last decade (2009-2019). Dugongs from the Andaman Sea, Trang, Satun and some areas of Krabi province exhibited greater diversity compared to other coastal regions of Thailand. Eleven haplotypes were identified, and when compared to other parts of the world (235 sequences obtained from NCBI), five clades were apparent from a total 353 sequences. Moreover, dugongs from the Andaman Sea were genetically distinct, with a separate haplotype belonging to two clades found only in Thai waters that separated from other groups around 1.2 million years ago. Genetic diversity of dugongs in present times was less than that of past decades, likely due to increased population fragmentation. Because dugongs are difficult to keep and breed in captivity, improved in situ conservation actions are needed to sustain genetically healthy wild populations, and in particular, the specific genetic group found only in the Andaman Sea.
Collapse
Affiliation(s)
- Anocha Poommouang
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Wannapimol Kriangwanich
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Kittisak Buddhachat
- Excellence Center in Veterinary Bioscience, Chiang Mai, 50100, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Janine L Brown
- Smithsonian Conservation Biology Institute, Center for Species Survival, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Promporn Piboon
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Siriwadee Chomdej
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | | | - Korakot Nganvongpanit
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Excellence Center in Veterinary Bioscience, Chiang Mai, 50100, Thailand.
| |
Collapse
|