1
|
Li JL, He Q, Chang MS, Sun SC. Ultrastructural diversity in the shell of Artemia resting eggs. Microsc Res Tech 2024; 87:1111-1121. [PMID: 38258422 DOI: 10.1002/jemt.24479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/07/2023] [Accepted: 12/09/2023] [Indexed: 01/24/2024]
Abstract
The shell of Artemia resting egg, which is a delicate multilayered envelope surrounding the inside diapause embryo, plays an important role in the survival strategy of Artemia. To date, the ultrastructure of resting eggshell has been studied for only handful populations, and knowledge about the diversity of shell structure is still limited. In this paper, resting eggs from 13 Artemia populations were studied by transmission electron microscopy. Results show that the basic configuration of resting eggshell is quite conservative, but variations are not uncommon in the fine ultrastructure of each main layer of the shell (e.g., the shape and distribution of the radially oriented pores in the cortical layer; the size, number and arrangement of chambers in the alveolar layer; and the development state of outer cuticular membrane [OCM]). The ultrastructural variation of eggshell seems not to be linked with species and reproductive mode of Artemia. Resting eggs from very high habitats (4300+ m above sea level [a.s.l.]) on Qinghai-Tibet Plateau and certain tropical salterns have a hypoplastic OCM, which may be related to the adaptation to habitat conditions such as low oxygen concentration. RESEARCH HIGHLIGHTS: Comparative study on resting eggs from 13 Artemia populations reveals high diversity in the fine structure of eggshell. Resting eggs from very high (4300+ m a.s.l.) habitats commonly have a hypoplastic OCM.
Collapse
Affiliation(s)
- Jin-Ling Li
- The Key Laboratory of Mariculture (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Qian He
- The Key Laboratory of Mariculture (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Muhammad Saleem Chang
- The Key Laboratory of Mariculture (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Department of Science & Technical Education, Faculty of Education, University of Sindh, Jamshoro, Sindh, Pakistan
| | - Shi-Chun Sun
- The Key Laboratory of Mariculture (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Li WJ, Chen PP, Sui LY, Sun SC. Temporal genetic variation mediated by climate change-induced salinity decline, a study on Artemia (Crustacea: Anostraca) from Kyêbxang Co, a high altitude salt lake on the Qinghai-Tibet Plateau. Gene 2024; 902:148160. [PMID: 38219874 DOI: 10.1016/j.gene.2024.148160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
The Qinghai-Tibet Plateau is one of the areas the richest in salt lakes and Artemia sites. As a result of climate warming and wetting, the areas of salt lakes on the plateau have been increasing, and the salinities have decreased considerably since 1990s. However, the impact of salinity change on the genetic diversity of Artemia is still unknown. Kyêbxang Co is the highest (4620 m above sea level) salt lake currently with commercial harvesting of Artemia resting eggs in the world, and harbors the largest Artemia population on the plateau. Its salinity had dropped from ∼67 ppt in 1998 to ∼39 ppt in 2019. Using 13 microsatellite markers and the mitochondrial cytochrome oxidase submit I (COI) gene, we analyzed the temporal changes of genetic diversity, effective population size and genetic structure of this Artemia population based on samples collected in 1998, 2007 and 2019. Our results revealed a steady decline of genetic diversity and significant genetic differentiation among the sampling years, which may be a consequence of genetic drift and the selection of decreased salinity. A decline of effective population size was also detected, which may be relative to the fluctuation in census population size, skewed sex ratio, and selection of the declined salinity. In 2007 and 2019, the Artemia population showed an excess of heterozygosity and significant deviation from Hardy-Weinberg Equilibrium (p < 0.001), which may be associated with the heterozygote advantage under low salinity. To comprehensively understand the impact of climate warming and wetting on Artemia populations on the plateau, further investigation with broad and intensive sampling are needed.
Collapse
Affiliation(s)
- Wen-Jie Li
- Fisheries College, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266000, China
| | - Pan-Pan Chen
- Fisheries College, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266000, China
| | - Li-Ying Sui
- Asian Regional Artemia Reference Center, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shi-Chun Sun
- Fisheries College, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266000, China.
| |
Collapse
|
3
|
Li WJ, Guo Y, Sun SC. Population genetics of Artemia urmiana species complex (Crustacea, Anostraca): A group with asymmetrical dispersal and gene flow mediated by migratory waterfowl. Gene 2024; 894:147957. [PMID: 37923096 DOI: 10.1016/j.gene.2023.147957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Bird-mediated dispersal of resting eggs is the main mechanism for Artemia dispersal among catchments. The bisexual populations of Artemia urmiana species complex, which is here considered to be a collection of Artemia genetically close to the so-called "Western Asian Lineage", are mostly distributed in central and western Asia (i.e., in regions falling into the Central Asian Flyway of migratory birds) and live in diversified habitats. Little is known about the genetic relationships among these populations. Aiming to understand the population genetic characteristics and the roles of migratory birds on the dispersal and gene flow of this Artemia group, we evaluated the genetic diversity, genetic differentiation, and gene flow among 14 populations, with their altitudes ranging from 540 to 4870 m above sea level, using 13 microsatellite markers. Almost all populations exhibited high genetic diversity and heterozygote excess, which may be a consequence of combined effects of dispersal and hybridization. The global genetic differentiation (FST) value was 0.092, the pairwise FST values were 0.003-0.246. Discriminant analysis of principal components identified three genetic clusters, consisting of Urmia Lake (Iran), Zhundong (Xinjiang, China), and 12 Qinghai-Tibet Plateau populations, respectively. The among-population genetic differentiation seems to be a consequence of isolation by distance and adaptation to diversified habitats induced by altitudinal gradient. Historical gene flows are asymmetrical, and show an evolutionary source-sink dynamics, with Jingyu Lake (Xinjiang, China) population being the major source. These results support our hypothesis that in Qinghai-Tibet Plateau and surrounding areas the bird-mediated dispersal of Artemia may be biased towards from north to south and/or from higher altitude to lower altitude.
Collapse
Affiliation(s)
- Wen-Jie Li
- Key Laboratory of Mariculture (Ministry of Education), and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266000, China
| | - Yan Guo
- Xinjiang Uygur Autonomous Region Fisheries Research Institute, Urumqi 830000, China
| | - Shi-Chun Sun
- Key Laboratory of Mariculture (Ministry of Education), and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266000, China.
| |
Collapse
|
4
|
Thirunavukkarasu S, Shadrin N, Munuswamy N. The pre- and postembryonic development of Artemia franciscana (Anostraca: Artemiidae). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:1003-1016. [PMID: 37635634 DOI: 10.1002/jez.2749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/20/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
Artemia franciscana is a universal live feed in aquaculture, and it has been reported as an invasive species in many Asian hypersaline ecosystems. The present observations illustrated the pre- and postembryonic development stages of the A. franciscana population confined to the Indian saltern of Kelambakkam. We observed their growth patterns during various hydration periods with specific time intervals. Results showed differences in the development stages with respect to unique identity. Interestingly, a period of hydration showed notable cellular movement toward clockwise positions in the hydrating cysts. After 10 h of hydration, blastocoel appeared, accelerating the dynamic route of nuclei movement. At the end of the invagination, the embryo burst out of the cyst, and a sequence of emerging stages was noted. With reference to light microscopic observations, a series of developmental stages were observed, and each instar was documented by developing limb buds of nauplii. Excitingly, the 10th and 11th instar stages reveal sexual differentiation between male and female individuals. Thus, the laboratory culture study clearly documented the different developmental stages with their specific characteristic features. However, further molecular study would provide a cellular basis for understanding the early development of A. franciscana.
Collapse
Affiliation(s)
| | - Nickolai Shadrin
- Laboratory of Extreme Ecosystems, A. O. Kovalevsky Institute of Biology of Southern Seas, Russian Academy of Sciences (RAS), Sevastopol, Russia
| | - Natesan Munuswamy
- Department of Zoology, Unit of Aquaculture and Cryobiology, University of Madras, Chennai, India
| |
Collapse
|
5
|
Morphology and biometry of two Chinese diploid parthenogenetic artemia populations with a special emphasis on the gonopods and frontal knobs of rare males. ZOOL ANZ 2023. [DOI: 10.1016/j.jcz.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
6
|
Elkrewi M, Khauratovich U, Toups MA, Bett VK, Mrnjavac A, Macon A, Fraisse C, Sax L, Huylmans AK, Hontoria F, Vicoso B. ZW sex-chromosome evolution and contagious parthenogenesis in Artemia brine shrimp. Genetics 2022; 222:iyac123. [PMID: 35977389 PMCID: PMC9526061 DOI: 10.1093/genetics/iyac123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Eurasian brine shrimp (genus Artemia) have closely related sexual and asexual lineages of parthenogenetic females, which produce rare males at low frequencies. Although they are known to have ZW chromosomes, these are not well characterized, and it is unclear whether they are shared across the clade. Furthermore, the underlying genetic architecture of the transmission of asexuality, which can occur when rare males mate with closely related sexual females, is not well understood. We produced a chromosome-level assembly for the sexual Eurasian species Artemia sinica and characterized in detail the pair of sex chromosomes of this species. We combined this new assembly with short-read genomic data for the sexual species Artemia sp. Kazakhstan and several asexual lineages of Artemia parthenogenetica, allowing us to perform an in-depth characterization of sex-chromosome evolution across the genus. We identified a small differentiated region of the ZW pair that is shared by all sexual and asexual lineages, supporting the shared ancestry of the sex chromosomes. We also inferred that recombination suppression has spread to larger sections of the chromosome independently in the American and Eurasian lineages. Finally, we took advantage of a rare male, which we backcrossed to sexual females, to explore the genetic basis of asexuality. Our results suggest that parthenogenesis is likely partly controlled by a locus on the Z chromosome, highlighting the interplay between sex determination and asexuality.
Collapse
Affiliation(s)
- Marwan Elkrewi
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Uladzislava Khauratovich
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna 1030, Austria
| | - Melissa A Toups
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
- Faculty of Science and Technology, Department of Life and Environmental Sciences, Bournemouth University, Poole BH12 5BB, UK
| | | | - Andrea Mrnjavac
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Ariana Macon
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Christelle Fraisse
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
- CNRS, Univ. Lille, UMR 8198—Evo-Eco-Paleo, 59000 Lille, France
| | - Luca Sax
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
- Lewis and Clark College, Portland, OR 97219, USA
| | - Ann Kathrin Huylmans
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg Universität Mainz, Mainz 55122, Germany
| | - Francisco Hontoria
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes (Castellón), Spain
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| |
Collapse
|
7
|
Sainz-Escudero L, Karen López-Estrada E, Rodríguez-Flores PC, García-París M. Brine shrimps adrift: historical species turnover in Western Mediterranean Artemia (Anostraca). Biol Invasions 2022. [DOI: 10.1007/s10530-022-02779-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractBrine shrimps (Artemia) have undergone geographic range and demographic expansions as a result of their interaction with humans since the beginning of salt harvesting. This interaction has favoured the expansion of some species but compromising the survival of others. Mediterranean native populations of Artemia salina from coastal salterns and lagoons are facing the presence and expansion of the introduced and invasive American species Artemia monica (= A. franciscana). However, this species could not be the only threat. Parthenogenetic populations of the Asian species A. urmiana and A. sinica are widespread along the Mediterranean and other areas of the world. In this work, with the use of large cox1 and mitogenomic datasets, phylogenetic and phylogeographic inferences, and a time calibrated tree, we confirmed the Asian origin and recent arrival of the current Western Mediterranean parthenogenetic populations of Artemia. In addition, the replacement of Iberian populations of A. salina by Asiatic parthenogenetic populations lead us to recognize parthenogens as invasive. Current salterns development and commercial importance of Artemia make human-mediated introduction probable. These results demonstrate again the impact that changing human interests have on population expansion or decline of species adapted to anthropogenic habitats. Artemia salina decline makes urgent the implementation of conservation measures such as its use in fish farming and salt production or its inoculation in inland salterns.
Collapse
|
8
|
Rode NO, Jabbour-Zahab R, Boyer L, Flaven É, Hontoria F, Stappen GV, Dufresne F, Haag C, Lenormand T. The origin of asexual brine shrimps. Am Nat 2022; 200:E52-E76. [DOI: 10.1086/720268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Castellucci F, Luchetti A, Mantovani B. Exploring mitogenome evolution in Branchiopoda (Crustacea) lineages reveals gene order rearrangements in Cladocera. Sci Rep 2022; 12:4931. [PMID: 35322086 PMCID: PMC8942981 DOI: 10.1038/s41598-022-08873-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
The class Branchiopoda, whose origin dates back to Cambrian, includes ~ 1200 species which mainly occupy freshwater habitats. The phylogeny and systematics of the class have been debated for long time, until recent phylogenomic analyses allowed to better clarify the relationships among major clades. Based on these data, the clade Anostraca (fairy and brine shrimps) is sister to all other branchiopods, and the Notostraca (tadpole shrimps) results as sister group to Diplostraca, which includes Laevicaudata + Spinicaudata (clam shrimps) and Cladoceromorpha (water fleas + Cyclestherida). In the present analysis, thanks to an increased taxon sampling, a complex picture emerges. Most of the analyzed mitogenomes show the Pancrustacea gene order while in several other taxa they are found rearranged. These rearrangements, though, occur unevenly among taxa, most of them being found in Cladocera, and their taxonomic distribution does not agree with the phylogeny. Our data also seems to suggest the possibility of potentially homoplastic, alternative gene order within Daphniidae.
Collapse
Affiliation(s)
- Filippo Castellucci
- Department of Biological, Geological and Environmental Sciences-University of Bologna, via Selmi 3, 40126, Bologna, Italy.,Zoology Section, Natural History Museum of Denmark-University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences-University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| | - Barbara Mantovani
- Department of Biological, Geological and Environmental Sciences-University of Bologna, via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
10
|
Han X, Tashi L, Sui L, Wang G, Deji G, Zhang C. The complete mitochondrial genome of Artemia persimilis Piccinelli and Prosdocimi, 1968 (Crustacea: Anostraca). Mitochondrial DNA B Resour 2022; 7:464-465. [PMID: 35295908 PMCID: PMC8920358 DOI: 10.1080/23802359.2022.2036258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In the study, we report the complete mitochondrial genome of Artemia persimilis Piccinelli and Prosdocimi, 1968 for the first time. The mitochondrial genome of A. persimilis is 15,436 bp in length, with the typical structure of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs) and 2 ribosomal RNA genes, and a non-coding control region (CR). Phylogenetic analysis showed that A. persimilis was at the basal position among the bisexual Artemia species, which revealed that A. persimilis is likely to be an ancestral clade. The present study could provide effective resources for population genetics study, as well as germplasm conservation in Artemia.
Collapse
Affiliation(s)
- Xuekai Han
- Asian Regional Artemia Reference Center, Tianjin University of Science and Technology, Tianjin, China
| | - Lahm Tashi
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Liying Sui
- Asian Regional Artemia Reference Center, Tianjin University of Science and Technology, Tianjin, China
| | - Guishuang Wang
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Gusang Deji
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Chi Zhang
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| |
Collapse
|