1
|
Olejarz A, Podgórski T. No evidence for the consistent effect of supplementary feeding on home range size in terrestrial mammals. Proc Biol Sci 2024; 291:20232889. [PMID: 38864336 DOI: 10.1098/rspb.2023.2889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 06/13/2024] Open
Abstract
Food availability and distribution are key drivers of animal space use. Supplemental food provided by humans can be more abundant and predictable than natural resources. It is thus believed that supplementary feeding modifies the spatial behaviour of wildlife. Yet, such effects have not been tested quantitatively across species. Here, we analysed changes in home range size owing to supplementary feeding in 23 species of terrestrial mammals using a meta-analysis of 28 studies. Additionally, we investigated the moderating effect of factors related to (i) species biology (sex, body mass and taxonomic group), (ii) feeding regimen (duration, amount and purpose), and (iii) methods of data collection and analysis (source of data, estimator and spatial confinement). We found no consistent effect of supplementary feeding on changes in home range size. While an overall tendency of reduced home range was observed, moderators varied in the direction and strength of the trends. Our results suggest that multiple drivers and complex mechanisms of home range behaviour can make it insensitive to manipulation with supplementary feeding. The small number of available studies stands in contrast with the ubiquity and magnitude of supplementary feeding worldwide, highlighting a knowledge gap in our understanding of the effects of supplementary feeding on ranging behaviour.
Collapse
Affiliation(s)
- Astrid Olejarz
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol, 165 00, Czech Republic
| | - Tomasz Podgórski
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol, 165 00, Czech Republic
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230 Białowieża, Poland
| |
Collapse
|
2
|
Broekman MJE, Hilbers JP, Hoeks S, Huijbregts MAJ, Schipper AM, Tucker MA. Environmental drivers of global variation in home range size of terrestrial and marine mammals. J Anim Ecol 2024; 93:488-500. [PMID: 38459628 DOI: 10.1111/1365-2656.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
As animal home range size (HRS) provides valuable information for species conservation, it is important to understand the driving factors of HRS variation. It is widely known that differences in species traits (e.g. body mass) are major contributors to variation in mammal HRS. However, most studies examining how environmental variation explains mammal HRS variation have been limited to a few species, or only included a single (mean) HRS estimate for the majority of species, neglecting intraspecific HRS variation. Additionally, most studies examining environmental drivers of HRS variation included only terrestrial species, neglecting marine species. Using a novel dataset of 2800 HRS estimates from 586 terrestrial and 27 marine mammal species, we quantified the relationships between HRS and environmental variables, accounting for species traits. Our results indicate that terrestrial mammal HRS was on average 5.3 times larger in areas with low human disturbance (human footprint index [HFI] = 0), compared to areas with maximum human disturbance (HFI = 50). Similarly, HRS was on average 5.4 times larger in areas with low annual mean productivity (NDVI = 0), compared to areas with high productivity (NDVI = 1). In addition, HRS increased by a factor of 1.9 on average from low to high seasonality in productivity (standard deviation (SD) of monthly NDVI from 0 to 0.36). Of these environmental variables, human disturbance and annual mean productivity explained a larger proportion of HRS variance than seasonality in productivity. Marine mammal HRS decreased, on average, by a factor of 3.7 per 10°C decline in annual mean sea surface temperature (SST), and increased by a factor of 1.5 per 1°C increase in SST seasonality (SD of monthly values). Annual mean SST explained more variance in HRS than SST seasonality. Due to the small sample size, caution should be taken when interpreting the marine mammal results. Our results indicate that environmental variation is relevant for HRS and that future environmental changes might alter the HRS of individuals, with potential consequences for ecosystem functioning and the effectiveness of conservation actions.
Collapse
Affiliation(s)
- Maarten J E Broekman
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jelle P Hilbers
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Selwyn Hoeks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Mark A J Huijbregts
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Aafke M Schipper
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
- PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands
| | - Marlee A Tucker
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Hansen KW, Ranc N, Morgan J, Jordan NR, McNutt JW, Wilson A, Wilmers CC. How territoriality and sociality influence the habitat selection and movements of a large carnivore. Ecol Evol 2024; 14:e11217. [PMID: 38628916 PMCID: PMC11019303 DOI: 10.1002/ece3.11217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
While territoriality is one of the key mechanisms influencing carnivore space use, most studies quantify resource selection and movement in the absence of conspecific influence or territorial structure. Our analysis incorporated social information in a resource selection framework to investigate mechanisms of territoriality and intra-specific competition on the habitat selection of a large, social carnivore. We fit integrated step selection functions to 3-h GPS data from 12 collared African wild dog packs in the Okavango Delta and estimated selection coefficients using a conditional Poisson likelihood with random effects. Packs selected for their neighbors' 30-day boundary (defined as their 95% kernel density estimate) and for their own 90-day core (defined as their 50% kernel density estimate). Neighbors' 30-day boundary had a greater influence on resource selection than any habitat feature. Habitat selection differed when they were within versus beyond their neighbors' 30-day boundary. Pack size, pack tenure, pup presence, and seasonality all mediated how packs responded to neighbors' space use, and seasonal dynamics altered the strength of residency. While newly-formed packs and packs with pups avoided their neighbors' boundary, older packs and those without pups selected for it. Packs also selected for the boundary of larger neighboring packs more strongly than that of smaller ones. Social structure within packs has implications for how they interact with conspecifics, and therefore how they are distributed across the landscape. Future research should continue to investigate how territorial processes are mediated by social dynamics and, in turn, how territorial structure mediates resource selection and movement. These results could inform the development of a human-wildlife conflict (HWC) mitigation tool by co-opting the mechanisms of conspecific interactions to manage space use of endangered carnivores.
Collapse
Affiliation(s)
- K Whitney Hansen
- Environmental Studies Department University of California Santa Cruz California USA
- Botswana Predator Conservation Maun Botswana
| | - Nathan Ranc
- Université de Toulouse, INRAE, CEFS Castanet-Tolosan France
| | - John Morgan
- Environmental Studies Department University of California Santa Cruz California USA
| | - Neil R Jordan
- Botswana Predator Conservation Maun Botswana
- Center for Ecosystem Science University of New South Wales Sydney New South Wales Australia
- Taronga Conservation Society Australia Dubbo New South Wales Australia
| | | | - Alan Wilson
- Structure & Motion Lab, Comparative Biomedical Sciences Royal Veterinary College London UK
| | | |
Collapse
|
4
|
Dhakal T, Jang GS, Kim M, Kim JH, Park J, Lim SJ, Park YC, Lee DH. Habitat utilization distribution of sika deer ( Cervus nippon). Heliyon 2023; 9:e20793. [PMID: 37867813 PMCID: PMC10585228 DOI: 10.1016/j.heliyon.2023.e20793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Habitat-specific and movement-related behavioral studies are essential for the development of sustainable biodiversity management practices. Although the number of studies on sika deer is increasing, habitat utilization distribution (UD)-related studies remain limited. In this study, we investigated the habitat UD behavior of sika deer (Cervus nippon) using a literature survey and an experimental study on Suncheon Bonghwasan Mountain, South Korea. We reviewed home range-related literature on sika deer published between 1982 and 2019 in order to assess their estimation methods, study region, and research background. We observed that the number of studies on sika deer has increased. The minimum convex polygon (MCP) has been utilized the most to estimate habitat UD, followed by the kernel density (KD), the Brownian bridge model, and a combination of these methods. The average home ranges (95 % utilization distribution) of sika deer from the literature survey were 236.99 ha and 1183.96 ha using the minimum convex polygon and kernel density approaches, respectively. The five female deer in our experimental study on Suncheon Bonghwasan Mountain had a mean home range of 66.831 ± 15.241 ha using the MCP approach and 78.324 ± 20.82 ha using the KD approach. The UD behavior of sika deer explored in this research is expected to benefit future scholars and policymakers when formulating deer management and wildlife conservation strategies.
Collapse
Affiliation(s)
- Thakur Dhakal
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Gab-Sue Jang
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minhan Kim
- National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - JoongYeol Park
- Division of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Jin Lim
- Division of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yung-Chul Park
- Division of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Do-Hun Lee
- National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea
| |
Collapse
|
5
|
Łoś M, Smolak K, Mitrus C, Rohm W, Van de Weghe N, Sila-Nowicka K. The applicability of human mobility scaling laws on animals-A Herring Gull case study. PLoS One 2023; 18:e0286239. [PMID: 37531341 PMCID: PMC10395819 DOI: 10.1371/journal.pone.0286239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/11/2023] [Indexed: 08/04/2023] Open
Abstract
With the development of sensors, recording and availability of high-resolution movement data from animals and humans, two disciplines have rapidly developed: human mobility and movement ecology. Addressing methodological gaps between these two mobility fields could improve the understanding of movement processes and has been defined as the Integrated Science of Movement. We apply well-known human mobility metrics and data processing methods to Global Positioning System (GPS) tracking data of European Herring Gulls (Larus argentatus) to test the usefulness of these methods for explaining animal mobility behavior. We use stop detection, spatial aggregation, and for the first time on animal movement data, two approaches to temporal aggregation (Next Time-Bin and Next Place). We also calculate from this data a set of movement statistics (visitation frequency, distinct locations over time, and radius of gyration). Furthermore, we analyze and compare the gull and human data from the perspective of scaling laws commonly used for human mobility. The results confirm those of previous studies and indicate differences in movement parameters between the breeding season and other parts of the year. This paper also shows that methods used in human mobility analysis have the potential to improve our understanding of animal behavior.
Collapse
Affiliation(s)
- Marcelina Łoś
- Institute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Kamil Smolak
- Institute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Cezary Mitrus
- Department of Vertebrate Ecology and Palaeontology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Witold Rohm
- Institute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Katarzyna Sila-Nowicka
- School of Environment, The University of Auckland, Auckland, New Zealand
- Institute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
6
|
Kraft S, Gandra M, Lennox RJ, Mourier J, Winkler AC, Abecasis D. Residency and space use estimation methods based on passive acoustic telemetry data. MOVEMENT ECOLOGY 2023; 11:12. [PMID: 36859381 PMCID: PMC9976422 DOI: 10.1186/s40462-022-00364-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/26/2022] [Indexed: 06/18/2023]
Abstract
Acoustic telemetry has helped overcome many of the challenges faced when studying the movement ecology of aquatic species, allowing to obtain unprecedented amounts of data. This has made it into one of the most widely used methods nowadays. Many ways to analyse acoustic telemetry data have been made available and deciding on how to analyse the data requires considering the type of research objectives, relevant properties of the data (e.g., resolution, study design, equipment), habits of the study species, researcher experience, among others. To ease this decision process, here we showcase (1) some of the methods used to estimate pseudo-positions and positions from raw acoustic telemetry data, (2) methods to estimate residency and (3) methods to estimate two-dimensional home and occurrence range using geometric or hull-based methods and density-distribution methods, a network-based approach, and three-dimensional methods. We provide examples of some of these were tested using a sample of real data. With this we intend to provide the necessary background for the selection of the method(s) that better fit specific research objectives when using acoustic telemetry.
Collapse
Affiliation(s)
- S Kraft
- Center of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal.
| | - M Gandra
- Center of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - R J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries at NORCE Norwegian Research Center, Bergen, Norway
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - J Mourier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - A C Winkler
- Center of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
| | - D Abecasis
- Center of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| |
Collapse
|
7
|
Pero EM, Palm EC, Chitwood MC, Hildreth AM, Keller BJ, Sumners JA, Hansen LP, Isabelle JL, Millspaugh JJ. Spatial acclimation of elk during population restoration to the Missouri Ozarks, USA. Anim Conserv 2023. [DOI: 10.1111/acv.12866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- E. M. Pero
- Wildlife Biology Program University of Montana Missoula MT USA
| | - E. C. Palm
- Wildlife Biology Program University of Montana Missoula MT USA
| | - M. C. Chitwood
- Natural Resource Ecology & Management Oklahoma State University Stillwater OK USA
| | | | - B. J. Keller
- Minnesota Department of Natural Resources St. Paul MN USA
| | - J. A. Sumners
- Missouri Department of Conservation Jefferson City MO USA
| | - L. P. Hansen
- Missouri Department of Conservation Columbia MO USA
- Minnesota Department of Natural Resources St. Paul MN USA
| | - J. L. Isabelle
- Missouri Department of Conservation Columbia MO USA
- Minnesota Department of Natural Resources St. Paul MN USA
| | | |
Collapse
|
8
|
Redpath SHA, Marks NJ, Menzies FD, O'Hagan MJH, Wilson RP, Smith S, Magowan EA, McClune DW, Collins SF, McCormick CM, Scantlebury DM. Impact of test, vaccinate or remove protocol on home ranges and nightly movements of badgers a medium density population. Sci Rep 2023; 13:2592. [PMID: 36788237 PMCID: PMC9929337 DOI: 10.1038/s41598-023-28620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
In the British Isles, the European badger (Meles meles) is thought to be the primary wildlife reservoir of bovine tuberculosis (bTB), an endemic disease in cattle. Test, vaccinate or remove ('TVR') of bTB test-positive badgers, has been suggested to be a potentially useful protocol to reduce bTB incidence in cattle. However, the practice of removing or culling badgers is controversial both for ethical reasons and because there is no consistent observed effect on bTB levels in cattle. While removing badgers reduces population density, it may also result in disruption of their social behaviour, increase their ranging, and lead to greater intra- and inter-species bTB transmission. This effect has been recorded in high badger density areas, such as in southwest England. However, little is known about how TVR affects the behaviour and movement of badgers within a medium density population, such as those that occur in Northern Ireland (NI), which the current study aimed to examine. During 2014-2017, badger ranging behaviours were examined prior to and during a TVR protocol in NI. Nightly distances travelled by 38 individuals were determined using Global Positioning System (GPS) measurements of animal tracks and GPS-enhanced dead-reckoned tracks. The latter was calculated using GPS, tri-axial accelerometer and tri-axial magnetometer data loggers attached to animals. Home range and core home range size were measured using 95% and 50% autocorrelated kernel density estimates, respectively, based on location fixes. TVR was not associated with measured increases in either distances travelled per night (mean = 3.31 ± 2.64 km) or home range size (95% mean = 1.56 ± 0.62 km2, 50% mean = 0.39 ± 0.62 km2) over the four years of study. However, following trapping, mean distances travelled per night increased by up to 44% eight days post capture. Findings differ from those observed in higher density badger populations in England, in which badger ranging increased following culling. Whilst we did not assess behaviours of individual badgers, possible reasons why no differences in home range size were observed include higher inherent 'social fluidity' in Irish populations whereby movements are less restricted by habitat saturation and/or that the numbers removed did not reach a threshold that might induce increases in ranging behaviour. Nevertheless, short-term behavioural disruption from trapping was observed, which led to significant increases in the movements of individual animals within their home range. Whether or not TVR may alter badger behaviours remains to be seen, but it would be better to utilise solutions such as oral vaccination of badgers and/or cattle as well as increased biosecurity to limit bTB transmission, which may be less likely to cause interference and thereby reduce the likelihood of bTB transmission.
Collapse
Affiliation(s)
- Sophie H A Redpath
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT4 3SD, Northern Ireland
| | - Nikki J Marks
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Fraser D Menzies
- Department of Agriculture, Environment and Rural Affairs, Veterinary Epidemiology Unit, Belfast, BT4 3SB, Northern Ireland
| | - Maria J H O'Hagan
- Department of Agriculture, Environment and Rural Affairs, Veterinary Epidemiology Unit, Belfast, BT4 3SB, Northern Ireland
| | - Rory P Wilson
- Department of Biological Sciences, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales
| | - Sinéad Smith
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Elizabeth A Magowan
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - David W McClune
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Shane F Collins
- Department of Agriculture, Environment and Rural Affairs, Veterinary Epidemiology Unit, Belfast, BT4 3SB, Northern Ireland
| | - Carl M McCormick
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT4 3SD, Northern Ireland
| | - D Michael Scantlebury
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland.
| |
Collapse
|
9
|
Sutton LJ, Ibañez JC, Salvador DI, Taraya RL, Opiso GS, Senarillos TLP, McClure CJW. Priority conservation areas and a global population estimate for the critically endangered Philippine Eagle. Anim Conserv 2023. [DOI: 10.1111/acv.12854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
| | - J. C. Ibañez
- Philippine Eagle Foundation Philippine Eagle Center Davao City Philippines
- University of the Philippines – Mindanao Davao City Philippines
| | - D. I. Salvador
- Philippine Eagle Foundation Philippine Eagle Center Davao City Philippines
| | - R. L. Taraya
- Philippine Eagle Foundation Philippine Eagle Center Davao City Philippines
| | - G. S. Opiso
- Philippine Eagle Foundation Philippine Eagle Center Davao City Philippines
| | | | | |
Collapse
|
10
|
Tiwari S, Dhakal T, Tiwari I, Jang GS, Oh Y. Spatial proliferation of African swine fever virus in South Korea. PLoS One 2022; 17:e0277381. [PMID: 36342947 PMCID: PMC9639837 DOI: 10.1371/journal.pone.0277381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
The African swine fever virus (ASFV) was first detected in South Korea on a pig farm in September 2019. Despite active preventive measures to control the spread of ASFV, outbreaks on pig farms and in wild boar have been increasing. In this study, we investigated the spatial contamination area using the minimum convex polygon (MCP) approach, and growth rate using a logistic diffusion model. On the basis of the ASFV outbreak locations recorded from September 17th, 2019, to May 20th, 2022, the MCP area for the second week was 618.41 km2 and expanded to 37959.67 km2 in the final week. The maximum asymptote of the logistic function was considered as the land area of South Korea, and we estimated logistic growth rates of 0.022 km2 per week and 0.094 km2 per month. Administrative bodies should implement preventive and quarantine measures for infectious diseases. The results of this study will be a reference for epidemiologists, ecologists, and policy makers and contribute to the establishment of appropriate quarantine measures for disease control and management.
Collapse
Affiliation(s)
- Shraddha Tiwari
- Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Thakur Dhakal
- Department of Life Science, Yeungnam University, Gyeongbuk, Republic of South Korea
| | - Ishwari Tiwari
- Department of Anatomy, Physiology and Biochemistry, Agriculture and Forestry University, Chitwan, Nepal
| | - Gab-Sue Jang
- Department of Life Science, Yeungnam University, Gyeongbuk, Republic of South Korea
| | - Yeonsu Oh
- Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
11
|
Jennelle CS, Walter WD, Crawford J, Rosenberry CS, Wallingford BD. Movement of white‐tailed deer in contrasting landscapes influences management of chronic wasting disease. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Christopher S. Jennelle
- Minnesota Department of Natural Resources 5463 West Broadway Avenue Forest Lake MN 55025 USA
| | - W. David Walter
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, 403 Forest Resources Building The Pennsylvania State University, University Park PA 16802 USA
| | - Joanne Crawford
- Minnesota Department of Natural Resources 2118 Campus Drive SE, Suite 100 Rochester MN 55904 USA
| | - Christopher S. Rosenberry
- Bureau of Wildlife Management Pennsylvania Game Commission 2001 Elmerton Avenue Harrisburg PA 17110 USA
| | - Bret D. Wallingford
- Bureau of Wildlife Management Pennsylvania Game Commission 2001 Elmerton Avenue Harrisburg PA 17110 USA
| |
Collapse
|
12
|
Detection parameters for managing invasive rats in urban environments. Sci Rep 2022; 12:16520. [PMID: 36192476 PMCID: PMC9530159 DOI: 10.1038/s41598-022-20677-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Effective mitigation of the impacts of invasive ship rats (Rattus rattus) requires a good understanding of their ecology, but this knowledge is very sparse for urban and peri-urban areas. We radiomarked ship rats in Wellington, New Zealand, to estimate detection parameters (σ, ε0, θ, and g0) that describe the process of an animal encountering a device (bait stations, chew cards and WaxTags) from a distance, and then approaching it and deciding whether to interact with it. We used this information in simulation models to estimate optimal device spacing for eradicating ship rats from Wellington, and for confirming eradication. Mean σ was 25.37 m (SD = 11.63), which equates to a circular home range of 1.21 ha. The mean nightly probability of an individual encountering a device at its home range center (ε0) was 0.38 (SD = 0.11), whereas the probability of interacting with the encountered device (θ) was 0.34 (SD = 0.12). The derived mean nightly probability of an individual interacting with a device at its home range center (g0) was 0.13 (SD = 0.08). Importantly, σ and g0 are intrinsically linked through a negative relationship, thus g0 should be derived from σ using a predictive model including individual variability. Simulations using this approach showed that bait stations deployed for about 500 days using a 25 m × 25 m grid consistently achieved eradication, and that a surveillance network of 3.25 chew cards ha−1 or 3.75 WaxTags ha−1 active for 14 nights would be required to confidently declare eradication. This density could be halved if the surveillance network was deployed for 28 nights or if the prior confidence in eradication was high (0.85). These recommendations take no account of differences in detection parameters between habitats. Therefore, if surveillance suggests that individuals are not encountering devices in certain habitats, device density should be adaptively revised. This approach applies to initiatives globally that aim to optimise eradication with limited funding.
Collapse
|
13
|
Cooke SJ, Bergman JN, Twardek WM, Piczak ML, Casselberry GA, Lutek K, Dahlmo LS, Birnie-Gauvin K, Griffin LP, Brownscombe JW, Raby GD, Standen EM, Horodysky AZ, Johnsen S, Danylchuk AJ, Furey NB, Gallagher AJ, Lédée EJI, Midwood JD, Gutowsky LFG, Jacoby DMP, Matley JK, Lennox RJ. The movement ecology of fishes. JOURNAL OF FISH BIOLOGY 2022; 101:756-779. [PMID: 35788929 DOI: 10.1111/jfb.15153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Movement of fishes in the aquatic realm is fundamental to their ecology and survival. Movement can be driven by a variety of biological, physiological and environmental factors occurring across all spatial and temporal scales. The intrinsic capacity of movement to impact fish individually (e.g., foraging) with potential knock-on effects throughout the ecosystem (e.g., food web dynamics) has garnered considerable interest in the field of movement ecology. The advancement of technology in recent decades, in combination with ever-growing threats to freshwater and marine systems, has further spurred empirical research and theoretical considerations. Given the rapid expansion within the field of movement ecology and its significant role in informing management and conservation efforts, a contemporary and multidisciplinary review about the various components influencing movement is outstanding. Using an established conceptual framework for movement ecology as a guide (i.e., Nathan et al., 2008: 19052), we synthesized the environmental and individual factors that affect the movement of fishes. Specifically, internal (e.g., energy acquisition, endocrinology, and homeostasis) and external (biotic and abiotic) environmental elements are discussed, as well as the different processes that influence individual-level (or population) decisions, such as navigation cues, motion capacity, propagation characteristics and group behaviours. In addition to environmental drivers and individual movement factors, we also explored how associated strategies help survival by optimizing physiological and other biological states. Next, we identified how movement ecology is increasingly being incorporated into management and conservation by highlighting the inherent benefits that spatio-temporal fish behaviour imbues into policy, regulatory, and remediation planning. Finally, we considered the future of movement ecology by evaluating ongoing technological innovations and both the challenges and opportunities that these advancements create for scientists and managers. As aquatic ecosystems continue to face alarming climate (and other human-driven) issues that impact animal movements, the comprehensive and multidisciplinary assessment of movement ecology will be instrumental in developing plans to guide research and promote sustainability measures for aquatic resources.
Collapse
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Jordanna N Bergman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - William M Twardek
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Morgan L Piczak
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Grace A Casselberry
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Keegan Lutek
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lotte S Dahlmo
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | - Kim Birnie-Gauvin
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Lucas P Griffin
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jacob W Brownscombe
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Graham D Raby
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Emily M Standen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrij Z Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, Virginia, USA
| | - Sönke Johnsen
- Biology Department, Duke University, Durham, North Caroline, USA
| | - Andy J Danylchuk
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nathan B Furey
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | | | - Elodie J I Lédée
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jon D Midwood
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Lee F G Gutowsky
- Environmental & Life Sciences Program, Trent University, Peterborough, Ontario, Canada
| | - David M P Jacoby
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Jordan K Matley
- Program in Aquatic Resources, St Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Robert J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
- Norwegian Institute for Nature Research, Trondheim, Norway
| |
Collapse
|
14
|
Ganz TR, DeVivo MT, Kertson BN, Roussin T, Satterfield L, Wirsing AJ, Prugh LR. Interactive effects of wildfires, season, and predator activity shape mule deer movements. J Anim Ecol 2022; 91:2273-2288. [PMID: 36071537 DOI: 10.1111/1365-2656.13810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
Wildfires are increasing in size, frequency, and severity due to climate change and fire suppression, but the direct and indirect effects on wildlife remain largely unresolved. Fire removes forest canopy, which can improve forage for ungulates but also reduce snow interception, leading to a deeper snowpack and potentially increased vulnerability to predation in winter. If ungulates exhibit predator-mediated foraging, burns should generally be selected for in summer to access high-quality forage and avoided in winter to reduce predation risk in deep snow. Fires also typically increase the amount of deadfall and initiate growth of dense understory vegetation, creating obstacles that may confer a hunting advantage to stalking predators and a disadvantage to coursing predators. To minimize risk, ungulates may therefore avoid burns when and where stalking predators are most active, and use burns when and where coursing predators are most active. We used telemetry data from GPS-collared mule deer (Odocoileus hemionus), cougars (Puma concolor), and wolves (Canis lupus) to develop step selection functions to examine how mule deer navigated species-specific predation risk across a landscape in northern Washington, USA that has experienced substantial wildfire activity during the past several decades. We considered a diverse array of wildfire impacts, accounting for both the severity of the fire and time since the burn (1 to 35 years) in our analyses. We observed support for the predator mediating foraging hypothesis: mule deer generally selected for burned areas in summer and avoided burns in winter. In addition, deer increased use of burned areas when and where wolf activity was high and avoided burns when and where cougar use was high in winter, suggesting the hunting mode of resident predators mediated the seasonal response of deer to burns. Deer were not more likely to die by predation in burned than in unburned areas, indicating that they adequately manage fire-induced changes to predation risk. As fire activity increases with climate change, our findings indicate the impact on ungulates will depend on tradeoffs between enhanced summer forage and functionally reduced winter range, mediated by characteristics of the predator community.
Collapse
Affiliation(s)
- Taylor R Ganz
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Melia T DeVivo
- Washington Department of Fish and Wildlife, Spokane Valley, WA, USA
| | - Brian N Kertson
- Washington Department of Fish and Wildlife, Snoqualmie, WA, USA
| | - Trent Roussin
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA.,Washington Department of Fish and Wildlife, Colville, WA, USA
| | - Lauren Satterfield
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Jain V, Bugnyar T, Cunningham SJ, Gallego-Abenza M, Loretto MC, Sumasgutner P. The spatial and temporal exploitation of anthropogenic food sources by common ravens (Corvus corax) in the Alps. MOVEMENT ECOLOGY 2022; 10:35. [PMID: 36008849 PMCID: PMC9414151 DOI: 10.1186/s40462-022-00335-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Anthropogenic food sources (AFSs) are widespread in human-transformed landscapes and the current scale at which they occur drives ecological change at the individual, population, and community levels. AFSs are exploited extensively by common ravens, Corvus corax. Understanding how raven populations use AFSs can provide insight into their ecological responses to AFSs. METHODS We equipped 81 ravens in the Austrian Alps with GPS-transmitters over a period of 2.75 years. Using these tracking data, we investigated how cohort differences (i.e., age, sex, and origin) and seasonal changes influence raven movement patterns (i.e., occurrence distribution and maximum daily displacement) and AFS-use (i.e., number of AFSs visited and probability of being present at any AFS) at 45 extensively exploited sites. RESULTS We found that proxies for experience and dominance, inferred by age (i.e., juvenile versus adult) and origin (i.e., wild-caught versus captive-bred-released) cohorts, influenced movement patterns and the number of AFSs visited. However, all individuals were equally likely to be present at AFSs, highlighting the importance of AFSs for non-breeders in the study population. Seasonal changes in environmental conditions that affect energetic demands, the availability of natural and anthropogenic food, and foraging competition, influenced individuals' occurrence distributions and AFS-use. We found that under harsher conditions in autumn and winter, individuals ranged wider and depended on AFSs to a larger degree. However, contrary to expectation, they were less likely to be present at AFSs in these seasons compared to spring and summer, suggesting a trade-off between time spent moving and exploiting resources. We attribute the small ranging movements exhibited by non-breeders in spring and summer to the presence of highly territorial and socially dominant breeders. As breeders mostly stay and forage within their territories during these seasons, competition at AFSs decrease, thereby increasing the likelihood of individuals being present at any AFS. CONCLUSIONS We emphasize that movement and AFS-use differ according to cohort differences and the seasonality of the environment. Our results highlight that predictable AFSs affect foraging strategies among non-breeding ravens. The extent of AFS-exploitation among non-breeding ravens in our study emphasize the potential of AFSs in shaping raven movement and resource-use.
Collapse
Affiliation(s)
- Varalika Jain
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, Private Bax X3, Rondebosch, Cape Town, 7701, South Africa.
- Core Facility for Behaviour and Cognition, Konrad Lorenz Research Centre, University of Vienna, Fischerau 13, 4645, Grünau im Almtal, Austria.
| | - Thomas Bugnyar
- Core Facility for Behaviour and Cognition, Konrad Lorenz Research Centre, University of Vienna, Fischerau 13, 4645, Grünau im Almtal, Austria
- Department of Behavioural and Cognitive Biology, University of Vienna, Djerasi Platz 1, 1030, Vienna, Austria
| | - Susan J Cunningham
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, Private Bax X3, Rondebosch, Cape Town, 7701, South Africa
| | - Mario Gallego-Abenza
- Core Facility for Behaviour and Cognition, Konrad Lorenz Research Centre, University of Vienna, Fischerau 13, 4645, Grünau im Almtal, Austria
- Department of Behavioural and Cognitive Biology, University of Vienna, Djerasi Platz 1, 1030, Vienna, Austria
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Matthias-Claudio Loretto
- Ecosystem Dynamics and Forest Management Group, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
- Berchtesgaden National Park, Doktorberg 6, 83471, Berchtesgaden, Germany
| | - Petra Sumasgutner
- Core Facility for Behaviour and Cognition, Konrad Lorenz Research Centre, University of Vienna, Fischerau 13, 4645, Grünau im Almtal, Austria
- Department of Behavioural and Cognitive Biology, University of Vienna, Djerasi Platz 1, 1030, Vienna, Austria
| |
Collapse
|
16
|
Foxes at your front door? Habitat selection and home range estimation of suburban red foxes (Vulpes vulpes). Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractThe red fox (Vulpes vulpes) is one of the most adaptable carnivorans, thriving in cities across the globe. We used GPS-tracking of five suburban foxes across high-density residential suburbs of Perth, Western Australia to quantify (1) their habitat selection and (2) home range area. All five foxes showed statistically significant avoidance of residential locations (p < 0.001) and preference for parkland (p < 0.001), with native vegetation reserves, golf courses, and water reserves showing disproportionately greater use. Landuse category also influenced their movements, with foxes moving quickest (i.e., commuting) in proximity to roads and slowest (i.e., foraging) when they were further from roads. Three females had core home ranges (50% autocorrelated-corrected kernel density estimate; AKDEc) averaging 37 ± 20 ha or 95% AKDEc averaging 208 ± 196 ha. One male had a 95 ha core home range and 349 ha 95% AKDEc but the other male covered an area ~ 20 times this: using a 371 ha core home range and 7,368 ha 95% AKDEc. The extensive movement patterns we describe are likely to be common for urban foxes, with half of published home range estimates for urban foxes (principally based on VHF data) excluding data for ‘lost’ individuals or animals that showed ‘excursions’. It is likely that the home range estimates for these urban exploiters have therefore been grossly underestimated to date. Further application of GPS trackers that allow remote download will vastly improve our understanding of habitat preference and exploitation of resources by urban foxes.
Collapse
|
17
|
Hudel L, Kappeler PM. Sex-specific movement ecology of the shortest-lived tetrapod during the mating season. Sci Rep 2022; 12:10053. [PMID: 35710848 PMCID: PMC9203456 DOI: 10.1038/s41598-022-14156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Sex-specific reproductive strategies are shaped by the distribution of potential mates in space and time. Labord’s chameleon (Furcifer labordi) from southwestern Madagascar is the shortest-lived tetrapod whose life-time mating opportunities are restricted to a few weeks. Given that these chameleons grow to sexual maturity within about three months and that all individuals die soon after breeding, their mating strategies should be adapted to these temporal constraints. The reproductive tactics of this or any other Malagasy chameleon species have not been studied, however. Radio-tracking and observations of 21 females and 18 males revealed that females exhibit high site fidelity, move small cumulative and linear distances, have low corresponding dispersal ratios and small occurrence distributions. In contrast, males moved larger distances in less predictable fashion, resulting in dispersal ratios and occurrence distributions 7–14 times larger than those of females, and males also had greater ranges of their vertical distribution. Despite synchronous hatching, males exhibited substantial inter-individual variation in body mass and snout-vent length that was significantly greater than in females, but apparently unrelated to their spatial tactics. Females mated with up to 6 individually-known mates, but frequent encounters with unmarked individuals indicate that much higher number of matings may be common, as are damaging fights among males. Thus, unlike perennial chameleons, F. labordi males do not seem to maintain and defend territories. Instead, they invest vastly more time and energy into locomotion for their body size than other species. Pronounced variation in key somatic traits may hint at the existence of alternative reproductive tactics, but its causes and consequences require further study. This first preliminary study of the mating system of a Malagasy chameleon indicates that, as in other semelparous tetrapods, accelerated life histories are tied to a mating system with intense contest and scramble competition among males.
Collapse
Affiliation(s)
- Lennart Hudel
- Department of Sociobiology/Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany
| | - Peter M Kappeler
- Department of Sociobiology/Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany. .,Behavioral Ecology Unit, German Primate Center, Leibniz Institute of Primate Biology, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
18
|
Zvidzai M, Zengeya FM, Masocha M, Ndaimani H, Murwira A. Application of GPS occurrence data to understand African white-backed vultures Gyps africanus spatial home range overlaps. Ecol Evol 2022; 12:e8778. [PMID: 35386881 PMCID: PMC8976281 DOI: 10.1002/ece3.8778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/01/2022] [Accepted: 03/13/2022] [Indexed: 11/07/2022] Open
Abstract
Understanding key overlap zones and habitats which are intensively shared by species in space and time is crucial as it provides vital information to inform spatial conservation with maximum benefits. The advent of high-resolution GPS technologies associated with new analytical algorithms is revolutionizing studies underpinning species spatial and social interaction patterns within ecosystems. Here, using a robust home range estimation algorithm, the autocorrelated kernel density estimator (AKDE) equipped with an equally powerful home range overlap metric, the Bhattacharyya's coefficient (BC), we provide one of the first attempts to estimate and delineate spatial home range overlap zones for critically endangered African white-backed vultures to inform conservation planning. Six vultures were captured in Hwange National Park using a modified cannon net system after which they were tagged and tracked with high-resolution GPS backpacks. Overall, results suggested weaker average home range overlaps based on both the pooled data (0.38 ± 0.26), wet non-breeding seasonal data (0.32 ± 0.23), and dry breeding season data (0.34 ± 0.28). Vultures 4, 5, and 6 consistently revealed higher home range overlaps across all the scales with values ranging between 0.60 and 0.99. Individual vultures showed consistence in space use patterns as suggested by high between-season home range overlaps, an indication that they may be largely resident within the Hwange ecosystem. Importantly, we also demonstrate that home range overlapping geographic zones are all concentrated within the protected area of Hwange National Park. Our study provides some of the first results on African vulture home range overlaps and segregation patterns in the savanna ecosystem based on unbiased telemetry data and rigorous analytical algorithms. Such knowledge may provide vital insights for prioritizing conservation efforts of key geographic overlap zones to derive maximum conservation benefits especially when targeting wide-ranging and critically endangered African white-backed vultures. To this end, spatial overlap zones estimated here, although based on a small sample size, could provide a strong foundation upon which other downstream social and ecological questions can be explored further to expand our understanding on shared space use mechanisms among African vulture species.
Collapse
Affiliation(s)
- Mark Zvidzai
- Department of Geography and Environmental ScienceUniversity of ZimbabweHarareZimbabwe
| | | | - Mhosisi Masocha
- Department of Geography and Environmental ScienceUniversity of ZimbabweHarareZimbabwe
| | - Henry Ndaimani
- Department of Geography and Environmental ScienceUniversity of ZimbabweHarareZimbabwe
| | - Amon Murwira
- Department of Geography and Environmental ScienceUniversity of ZimbabweHarareZimbabwe
| |
Collapse
|
19
|
Fleming CH, Deznabi I, Alavi S, Crofoot MC, Hirsch BT, Medici EP, Noonan MJ, Kays R, Fagan WF, Sheldon DR, Calabrese JM. Population‐level inference for home‐range areas. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. H. Fleming
- University of Maryland College Park College Park MD USA
- Smithsonian Conservation Biology Institute Front Royal VA USA
| | - I. Deznabi
- University of Massachusetts Amherst Amherst MA USA
| | - S. Alavi
- Max Planck Institute of Animal Behavior Konstanz Germany
| | - M. C. Crofoot
- Max Planck Institute of Animal Behavior Konstanz Germany
- University of Konstanz Konstanz Germany
| | | | - E. P. Medici
- Instituto de Pesquisas Ecológicas Nazaré Paulista Brazil
| | - M. J. Noonan
- The University of British Columbia Okanagan Kelowna BC Canada
| | - R. Kays
- North Carolina State University Raleigh NC USA
- North Carolina Museum of Natural Sciences Raleigh NC USA
| | - W. F. Fagan
- University of Maryland College Park College Park MD USA
| | - D. R. Sheldon
- University of Massachusetts Amherst Amherst MA USA
- Mount Holyoke College South Hadley MA USA
| | - J. M. Calabrese
- University of Maryland College Park College Park MD USA
- Smithsonian Conservation Biology Institute Front Royal VA USA
- Center for Advanced Systems Understanding (CASUS), Görlitz Germany
- Helmholtz Centre for Environmental Research (HZDR), Leipzig Germany
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), Leipzig Germany
| |
Collapse
|
20
|
Silva I, Fleming CH, Noonan MJ, Alston J, Folta C, Fagan WF, Calabrese JM. Autocorrelation‐informed home range estimation: A review and practical guide. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Inês Silva
- Center for Advanced Systems Understanding (CASUS) Görlitz Germany
- Helmholtz‐Zentrum Dresden‐Rossendorf (HZDR) Dresden Germany
| | - Christen H. Fleming
- Department of Biology University of Maryland College Park MD USA
- Smithsonian's National Zoo and Conservation Biology Institute Front Royal VA USA
| | - Michael J. Noonan
- Department of Biology University of British Columbia Okanagan Kelowna BC Canada
| | - Jesse Alston
- Center for Advanced Systems Understanding (CASUS) Görlitz Germany
- Helmholtz‐Zentrum Dresden‐Rossendorf (HZDR) Dresden Germany
| | - Cody Folta
- Department of Biology University of Maryland College Park MD USA
| | - William F. Fagan
- Department of Biology University of Maryland College Park MD USA
| | - Justin M. Calabrese
- Center for Advanced Systems Understanding (CASUS) Görlitz Germany
- Helmholtz‐Zentrum Dresden‐Rossendorf (HZDR) Dresden Germany
- Department of Biology University of Maryland College Park MD USA
- Helmholtz Centre for Environmental Research—UFZ Leipzig Germany
| |
Collapse
|
21
|
Crane M, Silva I, Marshall BM, Strine CT. Lots of movement, little progress: a review of reptile home range literature. PeerJ 2021; 9:e11742. [PMID: 34322323 PMCID: PMC8300531 DOI: 10.7717/peerj.11742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Reptiles are the most species-rich terrestrial vertebrate group with a broad diversity of life history traits. Biotelemetry is an essential methodology for studying reptiles as it compensates for several limitations when studying their natural history. We evaluated trends in terrestrial reptile spatial ecology studies focusing upon quantifying home ranges for the past twenty years. We assessed 290 English-language reptile home range studies published from 2000-2019 via a structured literature review investigating publications' study location, taxonomic group, methodology, reporting, and analytical techniques. Substantial biases remain in both location and taxonomic groups in the literature, with nearly half of all studies (45%) originating from the USA. Snakes were most often studied, and crocodiles were least often studied, while testudines tended to have the greatest within study sample sizes. More than half of all studies lacked critical methodological details, limiting the number of studies for inclusion in future meta-analyses (55% of studies lacked information on individual tracking durations, and 51% lacked sufficient information on the number of times researchers recorded positions). Studies continue to rely on outdated methods to quantify space-use (including Minimum Convex Polygons and Kernel Density Estimators), often failing to report subtleties regarding decisions that have substantial impact on home range area estimates. Moving forward researchers can select a suite of appropriate analytical techniques tailored to their research question (dynamic Brownian Bridge Movement Models for within sample interpolation, and autocorrelated Kernel Density Estimators for beyond sample extrapolation). Only 1.4% of all evaluated studies linked to available and usable telemetry data, further hindering scientific consensus. We ultimately implore herpetologists to adopt transparent reporting practices and make liberal use of open data platforms to maximize progress in the field of reptile spatial ecology.
Collapse
Affiliation(s)
- Matthew Crane
- Conservation Ecology Program, King Mongkut’s Institute of Technology Thonburi, Bangkok, Bangkhuntien / Bangkok, Thailand
| | - Inês Silva
- (CASUS), Center for Advanced Systems Understanding, Görlitz, Germany
- (HZDR), Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Benjamin M. Marshall
- School of Biology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Colin T. Strine
- School of Biology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
22
|
Meyer NFV, King J, Mahony M, Clulow J, Beranek C, Reedman C, Balkenhol N, Hayward MW. Large area used by squirrel gliders in an urban area, uncovered using GPS telemetry. Ecol Evol 2021; 11:7147-7153. [PMID: 34188802 PMCID: PMC8216951 DOI: 10.1002/ece3.7644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 11/08/2022] Open
Abstract
The squirrel glider (Petaurus norfolcensis) is a threatened, gliding marsupial that persists in fragmented landscapes despite its restricted capacity to cross large gaps. As measures to maintain and/or restore suitable habitat depend on knowledge about the species' ecological requirements, we investigated the area used by squirrel gliders in an urban area near Newcastle, Australia. Using GPS telemetry data and the autocorrelated kernel density estimator, we estimated area used to average 10.8 ha and varied from 4.6 to 15 ha, which is equal to or greater than found in previous studies that spanned longer time periods. This has implications when identifying the minimum patch size necessary for ensuring the long-term conservation of a squirrel glider population.
Collapse
Affiliation(s)
- Ninon F. V. Meyer
- Conservation Science Research GroupSchool of Environmental and Life SciencesThe University of NewcastleCallaghanNSWAustralia
- Wildlife SciencesFaculty of Forest SciencesUniversity of GöttingenGöttingenGermany
| | - John‐Paul King
- Conservation Science Research GroupSchool of Environmental and Life SciencesThe University of NewcastleCallaghanNSWAustralia
| | - Michael Mahony
- Conservation Science Research GroupSchool of Environmental and Life SciencesThe University of NewcastleCallaghanNSWAustralia
| | - John Clulow
- Conservation Science Research GroupSchool of Environmental and Life SciencesThe University of NewcastleCallaghanNSWAustralia
| | - Chad Beranek
- Conservation Science Research GroupSchool of Environmental and Life SciencesThe University of NewcastleCallaghanNSWAustralia
| | - Callum Reedman
- Conservation Science Research GroupSchool of Environmental and Life SciencesThe University of NewcastleCallaghanNSWAustralia
| | - Niko Balkenhol
- Wildlife SciencesFaculty of Forest SciencesUniversity of GöttingenGöttingenGermany
| | - Matt W. Hayward
- Conservation Science Research GroupSchool of Environmental and Life SciencesThe University of NewcastleCallaghanNSWAustralia
| |
Collapse
|
23
|
Fieberg J, Signer J, Smith B, Avgar T. A 'How to' guide for interpreting parameters in habitat-selection analyses. J Anim Ecol 2021; 90:1027-1043. [PMID: 33583036 PMCID: PMC8251592 DOI: 10.1111/1365-2656.13441] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/02/2021] [Indexed: 11/29/2022]
Abstract
Habitat‐selection analyses allow researchers to link animals to their environment via habitat‐selection or step‐selection functions, and are commonly used to address questions related to wildlife management and conservation efforts. Habitat‐selection analyses that incorporate movement characteristics, referred to as integrated step‐selection analyses, are particularly appealing because they allow modelling of both movement and habitat‐selection processes. Despite their popularity, many users struggle with interpreting parameters in habitat‐selection and step‐selection functions. Integrated step‐selection analyses also require several additional steps to translate model parameters into a full‐fledged movement model, and the mathematics supporting this approach can be challenging for many to understand. Using simple examples, we demonstrate how weighted distribution theory and the inhomogeneous Poisson point process can facilitate parameter interpretation in habitat‐selection analyses. Furthermore, we provide a ‘how to’ guide illustrating the steps required to implement integrated step‐selection analyses using the amt package By providing clear examples with open‐source code, we hope to make habitat‐selection analyses more understandable and accessible to end users.
Collapse
Affiliation(s)
- John Fieberg
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Johannes Signer
- Wildlife Science, Faculty of Forestry and Forest Ecology, University of Goettingen, Göttingen, Germany
| | - Brian Smith
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | - Tal Avgar
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| |
Collapse
|