1
|
Sungwan P, Kidoikhammouan S, Thonsri U, Saengboonmee C, Wongkham S, Okada S, Seubwai W. Anti-Tumor and Chemosensitizing Effects of the CDK Inhibitor Dinaciclib on Cholangiocarcinoma In Vitro and In Vivo. In Vivo 2024; 38:2284-2293. [PMID: 39187317 PMCID: PMC11363801 DOI: 10.21873/invivo.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND/AIM Cholangiocarcinoma (CCA) is a highly aggressive disease. Most of CCA patients are diagnosed in an advanced stage of the disease, when it is unresectable and there is chemoresistance, resulting in poor prognosis. However, effective therapeutic regimens and molecular targets for CCA remain poor. Cyclin-dependent kinases (CDKs) are key regulatory enzymes in cell cycle progression. Aberrant CDK activation is a hallmark of cancer. Dinaciclib is a small molecule inhibitor of multiple CDKs, currently under clinical evaluation for treating advanced malignancies. The efficacy of anti-tumor activity of dinaciclib against chemotherapy resistant CCA cells was examined in vitro and in vivo. MATERIALS AND METHODS In this study, the effect of dinaciclib on growth and cell cycle in CCA cell lines were determined using the MTT assay and cell cycle analysis. The anti-tumor activity of dinaciclib was investigated in CCA-inoculated mice. In addition, the chemosensitizing effect of dinaciclib was investigated in gemcitabine-treated CCA cell lines. RESULTS Dinaciclib significantly suppressed cell proliferation, induced G1/S phase cell cycle arrest and apoptosis of CCA cell lines. It significantly suppressed the growth of CCA cells in xenograft mouse models. We also found that dinaciclib significantly inhibited the growth of gemcitabine-resistant CCA cell lines (KKU-213A-GemR and KKU-100-GemR). Furthermore, dinaciclib significantly enhanced the anti-tumor activity of gemcitabine in CCA cell lines. CONCLUSION Dinaciclib has the potential to be an effective therapeutic agent to control tumor cell growth of both parental and gemcitabine-resistant CCA cells.
Collapse
Affiliation(s)
- Prin Sungwan
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Unchalee Thonsri
- Department of Biochemistry, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan;
| | - Wunchana Seubwai
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Chen Y, Xu X, Wang Y, Zhang Y, Zhou T, Jiang W, Wang Z, Chang J, Liu S, Chen R, Shan J, Wang J, Wang Y, Li C, Li X. Hypoxia-induced SKA3 promoted cholangiocarcinoma progression and chemoresistance by enhancing fatty acid synthesis via the regulation of PAR-dependent HIF-1a deubiquitylation. J Exp Clin Cancer Res 2023; 42:265. [PMID: 37821935 PMCID: PMC10565972 DOI: 10.1186/s13046-023-02842-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Spindle and kinetochore-associated complex subunit 3 (SKA3) plays an important role in cell proliferation by regulating the separation of chromosomes and their division into daughter cells. Previous studies demonstrated that SKA3 was strongly implicated in tumor development and progression. However, the roles of SKA3 in cholangiocarcinoma (CCA) and the underlying mechanisms remain unclear. METHODS Next-generation sequencing (NGS) was performed with paired CCA tissues and normal adjacent tissues (NATs). SKA3 was chose to be the target gene because of its remarkably upregulation and unknown function in cholangiocarcinoma in TCGA datasets, GSE107943 datasets and our sequencing results. RT-PCR and immunohistochemistry staining were used to detect the expression of SKA3 in paired CCA tissues and normal adjacent tissues. The SKA3 knockdown and overexpression cell line were constructed by small interfering RNA and lentivirus vector transfection. The effect of SKA3 on the proliferation of cholangiocarcinoma under hypoxic conditions was detected by experiments in vitro and in vivo. RNA-seq was used to find out the differentially expressed pathways in cholangiocarcinoma proliferation under hypoxia regulated by SKA3. IP/MS analysis and Western blot assays were used to explore the specific mechanism of SKA3 in regulating the expression of HIF-1a under hypoxia. RESULTS SKA3 was up-regulated in NGS, TCGA and GSE107943 databases and was associated with poor prognosis. Functional experiments in vitro and in vivo showed that hypoxia-induced SKA3 promoted cholangiocarcinoma cell proliferation. RNA-sequencing was performed and verified that SKA3 enhanced fatty acid synthesis by up-regulating the expression of key fatty acid synthase, thus promoting cholangiocarcinoma cell proliferation under hypoxic conditions. Further studies indicated that under hypoxic conditions, SKA3 recruited PARP1 to bind to HIF-1a, thus enhancing the poly ADP-ribosylation (PARylation) of HIF-1a. This PARylation enhanced the binding between HIF-1a and USP7, which triggered the deubiquitylation of HIF-1a under hypoxic conditions. Additionally, PARP1 and HIF-1a were upregulated in CCA and promoted CCA cell proliferation. SKA3 promoted CCA cell proliferation and fatty acid synthesis via the PARP1/HIF-1a axis under hypoxic conditions. High SKA3 and HIF-1a expression levels were associated with poor prognosis after surgery. CONCLUSION Hypoxia-induced SKA3 promoted CCA progression by enhancing fatty acid synthesis via the regulation of PARylation-dependent HIF-1a deubiquitylation. Furthermore, increased SKA3 level enhanced chemotherapy-resistance to gemcitabine-based regimen under hypoxic conditions. SKA3 and HIF-1a could be potential oncogenes and significant biomarkers for the analysis of CCA patient prognosis.
Collapse
Affiliation(s)
- Yananlan Chen
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Xiao Xu
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yirui Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yaodong Zhang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Tao Zhou
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Wangjie Jiang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Ziyi Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jiang Chang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Shuochen Liu
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Ruixiang Chen
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jijun Shan
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jifei Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yuming Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Changxian Li
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
- Key Laoratory for Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing Medical University), Nanjing, Jiangsu Province, China.
| | - Xiangcheng Li
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
- Key Laoratory for Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing Medical University), Nanjing, Jiangsu Province, China.
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
3
|
Song H, Wu J, Liu W, Cai K, Xie Z, Liu Y, Huang J, Gan S, Xiong Y, Sun Y. Key genes involved with prognosis were identified in lung adenocarcinoma by integrated bioinformatics analysis. Heliyon 2023; 9:e16789. [PMID: 37313154 PMCID: PMC10258416 DOI: 10.1016/j.heliyon.2023.e16789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023] Open
Abstract
Objective By screening the core genes in lung adenocarcinoma (LUAD) with bioinformatics, our study evaluated its prognosis value and role in infiltration process of immune cells. Methods Using GEO database, we screened 5 gene chips, including GSE11072, GSE32863, GSE43458, GSE115002, and GSE116959. Then, we obtained the corresponding differentially expressed genes by analyzed 5 gene chips online by GEO2R (P < 0.05, |logFC| > 1). Then, through DAVID online platform, Cytoscape 3.6.1 software and PPI network analysis, the network was visualized and obtain the final core genes. Next, we plan to use the GEPIA, UALCAN, Kaplan-Meier plotter and Time 2.0 database for corresponding analysis. The GEPIA database was used to verify the expression of core genes in LUAD and normal lung tissues, and survival analysis was used to evaluate the value of core genes in the prognosis of LUAD patients. UALCAN was used to verify the expression of the LUAD core gene and promoter methylation status, and the predictive value of core genes was evaluated in LUAD patients by the Kaplan-Meier plotter online tool. Then, we used the Time 2.0 database to identify the relationship to immune infiltration in LUAD. Finally, we used the human protein atlas (HPA) database for online immunohistochemical analysis of the expressed proteins. Results The expression of CCNB2 and CDC20 in LUAD were higher than those in normal lung tissues, their increased expression was negatively correlated with the overall survival rate of LUAD, and they were involved in cell cycle signal transduction, oocyte meiosis signal transduction as well as the infiltration process of immune cells in LUAD. The expression proteins of CCNB2 and CDC20 were also different in lung cancer tissue and normal lung tissue. Therefore, CCNB2 and CDC20 were identified as the vital core genes. Conclusion CCNB2 and CDC20 are essential genes that may constitute prognostic biomarkers in LUAD, they also participate the immune infiltration process and protein expression process of LUAD, and might provides basis for clinical anti-tumor drug research.
Collapse
Affiliation(s)
- Hao Song
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Junfeng Wu
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Wang Liu
- Department of Respiratory, The Second Affilated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Kaier Cai
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhilong Xie
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yingao Liu
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jiandi Huang
- Department of Pathology, Guangdong Medical University, Dongguan 523808/Zhanjiang 524001, China
| | - Siyuan Gan
- Department of Pathology, Guangdong Medical University, Dongguan 523808/Zhanjiang 524001, China
| | - Yinghuan Xiong
- Biological Sample Bank, The Affilated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, Dongguan 523808/Zhanjiang 524001, China
| |
Collapse
|
4
|
Hu S, Wang X, Wang T, Wang L, Liu L, Ren W, Liu X, Zhang W, Liao W, Liao Z, Zou R, Zhang X. Differential enrichment of H3K9me3 in intrahepatic cholangiocarcinoma. BMC Med Genomics 2022; 15:185. [PMID: 36028818 PMCID: PMC9414128 DOI: 10.1186/s12920-022-01338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor, which poses a serious threat to human health. Histone 3 lysine 9 trimethylation (H3K9me3) is a post-translational modification involved in regulating a broad range of biological processes and has been considered as potential therapeutic target in types of cancer. However, there is limited research on investigating profiles of histone modification H3K9me3 in ICC patients. Methods In this study, we applied the ChIP-seq technique to investigate the effect of H3K9me3 on ICC. Anti-H3K9me3 antibody was used for ChIP-seq in ICC (RBE cell lines) and HIBEpic (normal cell lines). MACS2 (peak-calling tools) was then used to identify the peaks recorded in RBE and HIBEpic cell lines. Gene expression, mutation and clinical data were downloaded from TCGA and cBioPortal databases. Results H3K9me3 exhibited abnormal methylation and influenced the process of abnormal gene expression in patients suffering from ICC. The Wnt/β-Catenin signaling pathway (also known as simply the WNT signaling pathway) was enriched in H3K9me3-regulated genes. Conclusions We are the first to report that H3K9me3 may play an important role in the progression of ICC. It promotes the understanding of epigenetic molecular mechanisms for ICC. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01338-1.
Collapse
Affiliation(s)
- Sheng Hu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmain Road, Kunming, China
| | - Xuejun Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmain Road, Kunming, China
| | - Tao Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmain Road, Kunming, China
| | - Lianmin Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmain Road, Kunming, China
| | - Lixin Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmain Road, Kunming, China
| | - Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoyong Liu
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Weihan Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmain Road, Kunming, China
| | - Weiran Liao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmain Road, Kunming, China
| | - Zhoujun Liao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmain Road, Kunming, China
| | - Renchao Zou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmain Road, Kunming, China.
| | - Xiaowen Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmain Road, Kunming, China.
| |
Collapse
|
5
|
KrishnaPriya S, Omer S, Banerjee S, Karunagaran D, Suraishkumar GK. An integrated approach to understand fluid shear stress-driven and reactive oxygen species-mediated metastasis of colon adenocarcinoma through mRNA-miRNA-lncRNA-circRNA networks. Mol Genet Genomics 2022; 297:1353-1370. [PMID: 35831469 DOI: 10.1007/s00438-022-01924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Development of colon adenocarcinoma (COAD) metastasis involves several mediators including fluid shear stress (FSS), intracellular ROS levels, and non-coding RNAs. In our present study, we identified and investigated the role of regulatory non-coding RNA molecules specifically involved in COAD metastasis and their association with FSS and ROS. Interactions between the mRNAs associated with FSS and ROS, the corresponding microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in COAD metastasis were used to generate the mRNA-miRNA-lncRNA-circRNA network. Experimental validation of the identified RNA hubs using quantitative real-time PCR demonstrated a direct effect of the FSS on their expression levels in cancer cells. FSS resulted in the downregulation of HMGA1 and RAN, as well as the upregulation of HSP90AA1, PMAIP1 and BIRC5. Application of shear stress also led to downregulation of hsa-miR-26b-5p and hsa-miR-34a-5p levels in HCT116 cells. Further, functional enrichment and survival analysis of the significant miRNAs, as well as the OncoPrint and the survival analyses of the selected mRNAs were performed. Subsequently, their functional role was also corroborated with existing literature. Ten significant miRNA hubs were identified, out of which hsa-miR-17-5p and hsa-miR-20a-5p were found to interact with lncRNA (CCAT2) while hsa-miR-335 was found to interact with four circRNAs. Fifteen significant miRNAs were identified in 10 different modules suggesting their importance in FSS and ROS-mediated COAD metastasis. Finally, 10 miRNAs and 3 mRNAs associated with FSS and/or ROS were identified as significant overall survival markers; 33 mRNAs were also identified as metastasis-free survival markers whereas 15 mRNAs showed > 10% gene alterations in TCGA-COAD data and may serve as promising therapeutic biomarkers in the COAD metastasis.
Collapse
Affiliation(s)
- Siluveru KrishnaPriya
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, India
| | - Sonal Omer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, India
| | - Satarupa Banerjee
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, India. .,School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India.
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, India
| | - G K Suraishkumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, India
| |
Collapse
|
6
|
Zhang Y, Wu L, Wang Z, Wang J, Roychoudhury S, Tomasik B, Wu G, Wang G, Rao X, Zhou R. Replication Stress: A Review of Novel Targets to Enhance Radiosensitivity-From Bench to Clinic. Front Oncol 2022; 12:838637. [PMID: 35875060 PMCID: PMC9305609 DOI: 10.3389/fonc.2022.838637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
DNA replication is a process fundamental in all living organisms in which deregulation, known as replication stress, often leads to genomic instability, a hallmark of cancer. Most malignant tumors sustain persistent proliferation and tolerate replication stress via increasing reliance to the replication stress response. So whilst replication stress induces genomic instability and tumorigenesis, the replication stress response exhibits a unique cancer-specific vulnerability that can be targeted to induce catastrophic cell proliferation. Radiation therapy, most used in cancer treatment, induces a plethora of DNA lesions that affect DNA integrity and, in-turn, DNA replication. Owing to radiation dose limitations for specific organs and tumor tissue resistance, the therapeutic window is narrow. Thus, a means to eliminate or reduce tumor radioresistance is urgently needed. Current research trends have highlighted the potential of combining replication stress regulators with radiation therapy to capitalize on the high replication stress of tumors. Here, we review the current body of evidence regarding the role of replication stress in tumor progression and discuss potential means of enhancing tumor radiosensitivity by targeting the replication stress response. We offer new insights into the possibility of combining radiation therapy with replication stress drugs for clinical use.
Collapse
Affiliation(s)
- Yuewen Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinpeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Bartlomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Zhang G, Liu X, Sun Z, Feng X, Wang H, Hao J, Zhang X. A2M is a potential core gene in intrahepatic cholangiocarcinoma. BMC Cancer 2022; 22:5. [PMID: 34979994 PMCID: PMC8722218 DOI: 10.1186/s12885-021-09070-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is a type of malignant tumor ranking the second in the incidence of primary liver cancer following hepatocellular carcinoma. Both the morbidity and mortality have been increasing in recent years. Small duct type of ICC has potential therapeutic targets. But overall, the prognosis of patients with ICC is usually very poor. Methods To search latent therapeutic targets for ICC, we programmatically selected the five most suitable microarray datasets. Then, we made an analysis of these microarray datasets (GSE26566, GSE31370, GSE32958, GSE45001 and GSE76311) collected from the Gene Expression Omnibus (GEO) database. The GEO2R tool was effective to find out differentially expressed genes (DEGs) between ICC and normal tissue. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were executed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) v 6.8. The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to analyze protein–protein interaction of these DEGs and protein–protein interaction of these DEGs was modified by Cytoscape3.8.2. Survival analysis was performed using Gene Expression Profiling Interactive Analysis (GEPIA) online analysis tool. Results A total of 28 upregulated DEGs and 118 downregulated DEGs were screened out. Then twenty hub genes were selected according to the connectivity degree. The survival analysis results showed that A2M was closely related to the pathogenesis and prognosis of ICC and was a potential therapeutic target for ICC. Conclusions According to our study, low A2M expression in ICC compared to normal bile duct tissue was an adverse prognostic factor in ICC patients. The value of A2M in the treatment of ICC needs to be further studied.
Collapse
Affiliation(s)
- Guanran Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Xuyue Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Zhengyang Sun
- School of Information Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoning Feng
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Haiyan Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaoli Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|