1
|
Yin F, Hu Y, Cao X, Xiao X, Zhang M, Xiang Y, Wang L, Yao Y, Sui M, Shi W. JmjC domain-containing histone demethylase gene family in Chinese cabbage: Genome-wide identification and expressional profiling. PLoS One 2024; 19:e0312798. [PMID: 39546552 PMCID: PMC11567544 DOI: 10.1371/journal.pone.0312798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
The Jumonji C (JmjC) structural domain-containing gene family plays essential roles in stress responses. However, descriptions of this family in Brassica rapa ssp. pekinensis (Chinese cabbage) are still scarce. In this study, we identified 29 members of the BrJMJ gene family, with cis-acting elements related to light, low temperature, anaerobic conditions, and phytohormone responses. Most BrJMJs were highly expressed in the siliques and flowers, suggesting that histone demethylation may play a crucial role in reproductive organ development. The expression of BrJMJ1, BrJMJ2, BrJMJ5, BrJMJ13, BrJMJ21 and BrJMJ24 gradually increased with higher Cd concentration under Cd stress, while BrJMJ4 and BrJMJ29 could be induced by osmotic, salt, cold, and heat stress. These results demonstrate that BrJMJs are responsive to abiotic stress and support future analysis of their biological functions.
Collapse
Affiliation(s)
- Fengrui Yin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Yuanfeng Hu
- Agricultural Sciences Research Center, Pingxiang, Jiangxi Province, P. R. China
| | - Xiaoqun Cao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Xufeng Xiao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Ming Zhang
- Department of Biotechnology, Jiangxi Biotech Vocational College, Nanchang, Jiangxi Province, P. R. China
| | - Yan Xiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Liangdeng Wang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Yuekeng Yao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Meilan Sui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Wenling Shi
- Department of Biotechnology, Jiangxi Biotech Vocational College, Nanchang, Jiangxi Province, P. R. China
| |
Collapse
|
2
|
Cao Y, Wu C, Ma L. Lysine demethylase 5B (KDM5B): A key regulator of cancer drug resistance. J Biochem Mol Toxicol 2024; 38:e23587. [PMID: 38014925 DOI: 10.1002/jbt.23587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Chemoresistance, a roadblock in the chemotherapy process, has been impeding its effective treatment. KDM5B, a member of the histone demethylase family, has been crucial in the emergence and growth of malignancies. More significantly, KDM5B has recently been linked closely to cancer's resistance to chemotherapy. In this review, we explain the biological properties of KDM5B, its function in the emergence and evolution of cancer treatment resistance, and our hopes for future drug resistance-busting combinations involving KDM5B and related targets or medications.
Collapse
Affiliation(s)
- Yaquan Cao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian, China
| |
Collapse
|
3
|
Jun SE, Shim JS, Park HJ. Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time. PLANTS (BASEL, SWITZERLAND) 2023; 12:3299. [PMID: 37765463 PMCID: PMC10535918 DOI: 10.3390/plants12183299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Flowering time in plants is a complex process regulated by environmental conditions such as photoperiod and temperature, as well as nutrient conditions. While the impact of major nutrients like nitrogen, phosphorus, and potassium on flowering time has been well recognized, the significance of micronutrient imbalances and their deficiencies should not be neglected because they affect the floral transition from the vegetative stage to the reproductive stage. The secondary major nutrients such as calcium, magnesium, and sulfur participate in various aspects of flowering. Micronutrients such as boron, zinc, iron, and copper play crucial roles in enzymatic reactions and hormone biosynthesis, affecting flower development and reproduction as well. The current review comprehensively explores the interplay between microelements and flowering time, and summarizes the underlying mechanism in plants. Consequently, a better understanding of the interplay between microelements and flowering time will provide clues to reveal the roles of microelements in regulating flowering time and to improve crop reproduction in plant industries.
Collapse
Affiliation(s)
- Sang Eun Jun
- Department of Molecular Genetics, Dong-A University, Busan 49315, Republic of Korea;
| | - Jae Sun Shim
- School of Biological Science and Technology, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Cheng YZ, He GQ, Yang SD, Ma SH, Ma JP, Shang FHZ, Li XF, Jin HY, Guo DL. Genome-wide identification and expression analysis of JmjC domain-containing genes in grape under MTA treatment. Funct Integr Genomics 2022; 22:783-795. [PMID: 35854188 DOI: 10.1007/s10142-022-00885-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 12/31/2022]
Abstract
Histone demethylases containing the JmjC domain play an extremely important role in maintaining the homeostasis of histone methylation and are closely related to plant growth and development. Currently, the JmjC domain-containing proteins have been reported in many species; however, they have not been systematically studied in grapes. In this paper, 21 VviJMJ gene family members were identified from the whole grape genome, and the VviJMJ genes were classified into five subfamilies: KDM3, KDM4, KDM5, JMJD6, and JMJ-only based on the phylogenetic relationship and structural features of Arabidopsis and grape. After that, the conserved sites of VviJMJ genes were revealed by protein sequence analysis. In addition, chromosomal localization and gene structure analysis revealed the heterogeneous distribution of VviJMJ genes on grape chromosomes and the structural features of VviJMJ genes, respectively. Analysis of promoter cis-acting elements demonstrated numerous hormone, light, and stress response elements in the promoter region of the VviJMJ genes. Subsequently, the grape fruit was treated with MTA (an H3K4 methylation inhibitor), which significantly resulted in the early ripening of grape fruits. The qRT-PCR analysis showed that VviJMJ genes (except VviJMJ13c) had different expression patterns during grape fruit development. The expression of VviJMJ genes in the treatment group was significantly higher than that in the control group. The results indicate that VviJMJ genes are closely related to grape fruit ripening.
Collapse
Affiliation(s)
- Yi-Zhe Cheng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Guang-Qi He
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Sheng-Di Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Shuai-Hui Ma
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Jin-Ping Ma
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Fang-Hui-Zi Shang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Xu-Fei Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Hui-Ying Jin
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China. .,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
5
|
Wang X, Pan C, Long J, Bai S, Yao M, Chen J, Sun G, Fan Y, Wang Z, Liu F, Liu C, Li Q. Genome-wide identification of the jumonji C domain- containing histone demethylase gene family in wheat and their expression analysis under drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:987257. [PMID: 36092409 PMCID: PMC9453444 DOI: 10.3389/fpls.2022.987257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Methylation and demethylation of histone play a crucial role in regulating chromatin formation and gene expression. The jumonji C (JmjC) domain-containing proteins are demethylases that are involved in regulating epigenetic modification in plants. In our study, the JmjC genes in Triticum aestivum L., Triticum turgidum L., Triticum dicoccoides L., Triticum urartu L., and Aegilops tauschii L. were identified. Phylogenetic relationship and colinearity analysis revealed that the wheat JmjC genes were conserved in A, B, and D subgenomes during evolution. Cis-acting elements analysis showed that elements related to stress response, hormone response, and light response were found in wheat JmjC genes. The expression of JmjC genes was affected by tissue types and developmental stages, and members of the same subfamily tended to have similar expression patterns in wheat. They also showed a unique expression pattern in root during PEG (Polyethylene glycol) treatment. In conclusion, comprehensive analysis indicated that three members (Tr-1A-JMJ2, Tr-1B-JMJ2, and Tr-1D-JMJ2) might be regulated by several hormones and function in the early stages of drought stress, while eight members (Tr-1B-JMJ3, Tr-4B-JMJ1, Tr-7A-JMJ1, etc.) displayed a significantly high expression after 24 h of PEG treatment, indicating a role in the later stages of drought stress. This research presents the first genome-wide study of the JmjC family in wheat, and lays the foundation for promoting the study of their functional characterization in wheat drought resistance.
Collapse
Affiliation(s)
- Xinhua Wang
- School of Agriculture, Ningxia University, Yinchuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Cuili Pan
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jiaohui Long
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Shuangyu Bai
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Mingming Yao
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jiajing Chen
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Gang Sun
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yalei Fan
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhangjun Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Fenglou Liu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Caixia Liu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Qingfeng Li
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
6
|
Xiao M, Wang J, Xu F. Methylation hallmarks on the histone tail as a linker of osmotic stress and gene transcription. FRONTIERS IN PLANT SCIENCE 2022; 13:967607. [PMID: 36035677 PMCID: PMC9399788 DOI: 10.3389/fpls.2022.967607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 06/12/2023]
Abstract
Plants dynamically manipulate their gene expression in acclimation to the challenging environment. Hereinto, the histone methylation tunes the gene transcription via modulation of the chromatin accessibility to transcription machinery. Osmotic stress, which is caused by water deprivation or high concentration of ions, can trigger remarkable changes in histone methylation landscape and genome-wide reprogramming of transcription. However, the dynamic regulation of genes, especially how stress-inducible genes are timely epi-regulated by histone methylation remains largely unclear. In this review, recent findings on the interaction between histone (de)methylation and osmotic stress were summarized, with emphasis on the effects on histone methylation profiles imposed by stress and how histone methylation works to optimize the performance of plants under stress.
Collapse
|