1
|
Boniardi G, Esposito L, Pesenti M, Catenacci A, Guembe M, Garcia-Zubiri IX, El Chami D, Canziani R, Turolla A. Optimizing phosphorus precipitation from acidic sewage sludge ash leachate: Use of Mg-rich mining by-products for enhanced nutrient recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122943. [PMID: 39447372 DOI: 10.1016/j.jenvman.2024.122943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/12/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Phosphorus recovery from Sewage Sludge Ashes (SSA) by wet chemical extraction followed by selective precipitation has gained great attention in recent years, attempting to reduce the anthropic pressure on natural reserves. This study investigates the selective precipitation process at lab- and small pilot-scales by means of two conventional and one innovative precipitating agents, the latter derived from a low-grade magnesium oxide mining by-product (LG-MgO named PC8), assessing the role of the most relevant operating parameters. Lab-scale experiments were performed on leachates obtained from bottom and fly ashes, in which several operating conditions were tested, differing in the type of precipitating agent, target pH and nutrient molar ratio. Based on experimental results, small pilot-scale experiments were conducted with Ca(OH)2 and PC8 at pH 7. Effective phosphorus precipitation was obtained at lab-scale at pH equal to 4 for high Al/P molar ratio, while SSA leachate with low Al/P molar ratio promoted improved phosphorus precipitation (>90%) only at pH higher than 8 with PC8. Small pilot-scale findings confirmed the effectiveness of PC8 in increasing simultaneously the pH and the nutrient content of the solid precipitate. The comprehensive assessment of the samples denoted compliance with the European Regulation (EU 2019/1009), which allows the formulation of different fertilizers with agronomic relevance. This is the first time that experiments from small pilot-scale tests in the field of phosphorus recovery from SSA were investigated using an innovative precipitant providing key information for the process scale-up.
Collapse
Affiliation(s)
- Gaia Boniardi
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA) - Environmental Section, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Lorenzo Esposito
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA) - Environmental Section, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Marco Pesenti
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA) - Environmental Section, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Arianna Catenacci
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA) - Environmental Section, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Maitane Guembe
- MAGNA - Magnesitas Navarras S.A., Av. Roncesvalles s/n, 31630, Zubiri, Navarre, Spain
| | - Inigo X Garcia-Zubiri
- MAGNA - Magnesitas Navarras S.A., Av. Roncesvalles s/n, 31630, Zubiri, Navarre, Spain
| | - Daniel El Chami
- TIMAC AGRO Italia S.p.A., S.P.13 - Località Ca' Nova, 26010, Ripalta Arpina, (CR), Italy
| | - Roberto Canziani
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA) - Environmental Section, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Andrea Turolla
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA) - Environmental Section, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| |
Collapse
|
2
|
Ghonaim MM, Attya AM, Aly HG, Mohamed HI, Omran AAA. Agro-morphological, biochemical, and molecular markers of barley genotypes grown under salinity stress conditions. BMC PLANT BIOLOGY 2023; 23:526. [PMID: 37899447 PMCID: PMC10614329 DOI: 10.1186/s12870-023-04550-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023]
Abstract
The aim of this study was to evaluate the impact of salt stress on morphological, yield, biochemical, and molecular attributes of different barley genotypes. Ten genotypes were cultivated at Fayoum Research Station, El-Fayoum Governorate, Egypt, during two seasons (2020-2021 and 2021-2022), and they were exposed to two different salt concentrations (tap water as a control and 8000 ppm). The results showed that genotypes and salt stress had a significant impact on all morphological and physiological parameters. The morphological parameters (plant height) and yield attributes (spike length, number of grains per spike, and grain yield per plant) of all barley genotypes were significantly decreased under salt stress as compared to control plants. Under salt stress, the total soluble sugars, proline, total phenol, total flavonoid, ascorbic acid, malondialdehyde, hydrogen peroxide, and sodium contents of the shoots of all barley genotypes significantly increased while the potassium content decreased. L1, which is considered a sensitive genotype was more affected by salinity stress than the tolerance genotypes L4, L6, L9, and Giza 138. SDS-PAGE of seed proteins demonstrated high levels of genetic variety with a polymorphism rate of 42.11%. All genotypes evaluated revealed significant variations in the seed protein biochemical markers, with new protein bands appearing and other protein bands disappearing in the protein patterns of genotypes cultivated under various conditions. Two molecular marker techniques (SCoT and ISSR primers) were used in this study. Ten Start Codon Targeted (SCoT) primers exhibited a total of 94 fragments with sizes ranging from 1800 base pairs to 100 base pairs; 29 of them were monomorphic, and 65 bands, with a polymorphism of 62.18%, were polymorphic. These bands contained 21 unique bands (9 positive specific markers and 12 negative specific markers). A total of 54 amplified bands with molecular sizes ranging from 2200 to 200 bp were produced using seven Inter Simple Sequence Repeat (ISSR) primers; 31 of them were monomorphic bands and 23 polymorphic bands had a 40.9% polymorphism. The techniques identified molecular genetic markers associated with salt tolerance in barley crop and successfully marked each genotype with distinct bands. The ten genotypes were sorted into two main groups by the unweighted pair group method of arithmetic averages (UPGMA) cluster analysis based on molecular markers and data at a genetic similarity coefficient level of 0.71.
Collapse
Affiliation(s)
- Marwa M Ghonaim
- Cell Study Research Department, Field Crops Research Institute, Agriculture Research Center, Giza, Egypt
| | - A M Attya
- Barley Research Department, Field Crops Research Institute, Agriculture Research Center, Giza, Egypt
| | - Heba G Aly
- Barley Research Department, Field Crops Research Institute, Agriculture Research Center, Giza, Egypt
| | - Heba I Mohamed
- Faculty of Education, Biological and Geological Sciences Department, Ain Shams University, El Makres St. Roxy, Cairo, 11341, Egypt.
| | - Ahmed A A Omran
- Faculty of Education, Biological and Geological Sciences Department, Ain Shams University, El Makres St. Roxy, Cairo, 11341, Egypt
| |
Collapse
|
3
|
Keshtehgar A, Dahmardeh M, Ghanbari A, Khammari I. Prediction models of macro-nutrient content in plant organs of Cucumis melo in response to soil elements using support vector regression. PeerJ 2023; 11:e15417. [PMID: 37810792 PMCID: PMC10552743 DOI: 10.7717/peerj.15417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/24/2023] [Indexed: 10/10/2023] Open
Abstract
Background Undoubtedly, the importance of food and food security as one of the present and future challenges is not invisible to anyone. Nowadays, the development of methods for monitoring the nutrient content in crop products is an essential issue for implementing reasonable and logical soil properties management. The modeling technique can evaluate the soil properties of fields and study the subject of crop yield through soil management. This study aims to predict fruit yield and macro-nutrient content in plant organs of Cucumis melo in response to soil elements using support vector regression (SVR). Methodology In the spring of 2020, this study was done as a factorial test in a randomized complete block design with three replications. The first factor was the use of fertilizers in six levels: no fertilizer (control), cow manure (30 t ha-1), sheep manure (30 t ha-1), nanobiomic foliar application (2 l ha-1), silicone foliar application (3 l ha-1), and chemical fertilizer from urea, triple superphosphate, and potassium sulfate sources (200, 100, and 150 kg ha-1). In addition, four levels of vermicompost considering as the second factor: no vermicompost (control), 5, 10, and 15 t ha-1. Input data sets such as fruit yield and nitrogen, phosphorus, and potassium levels in the seeds, fruits, leaves, and roots are used to calibrate the probabilistic model of SP using SVR. Results According to the results, when the data sets of the nitrogen, phosphorus, and potassium in the fruit uses as input, the accuracy of these models was higher than 80.0% (R2 = 0.807 for predicting fruit nitrogen; R2 = 0.999 for fruit phosphorus; R2 = 0.968 for fruit potassium). Also, the results of the prediction models in response to soil elements showed that the soil nitrogen content ranged from 0.05 to 1.1%, soil phosphorus from 10 to 59 mg kg-1, and soil potassium from 180 to 320 mg kg-1, which offers a suitable macro-nutrient content in the soil. Likewise, the best fruit nitrogen content ranged from 1.27 to 4.33%, fruit phosphorus from 15.74 to 26.19%, fruit potassium from 15.19 to 19.67%, and fruit yield from 2.16 to 5.95 kg per plant obtained under NPK chemical fertilizers and using 15 t ha-1 of vermicompost. Conclusions Because the fruit values had the highest contribution in prediction than observed values, thus identified as the best plant organs in response to soil elements. Based on our findings, the importance of fruit phosphorus identifies as a determinant that strongly influenced melon prediction models. More significant values of soil elements do not affect increasing fruit yield and macro-nutrient content in plant organs, and excessive application may not be economical. Therefore, our studies provide an efficient approach with potentially high accuracy to estimate fruit yield and macro-nutrient in the fruits of Cucumis melo in response to soil elements and cause a saving in the amount of fertilizer during the growing season.
Collapse
Affiliation(s)
- Abbas Keshtehgar
- Department of Agronomy, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| | - Mahdi Dahmardeh
- Department of Agronomy, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| | - Ahmad Ghanbari
- Department of Agronomy, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| | - Issa Khammari
- Department of Agronomy, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| |
Collapse
|
4
|
Toor MD, Kizilkaya R, Ullah I, Koleva L, Basit A, Mohamed HI. Potential Role of Vermicompost in Abiotic Stress Tolerance of Crop Plants: a Review. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2023. [DOI: 10.1007/s42729-023-01476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/06/2023] [Indexed: 10/26/2023]
|
5
|
Khan F, Siddique AB, Shabala S, Zhou M, Zhao C. Phosphorus Plays Key Roles in Regulating Plants' Physiological Responses to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2861. [PMID: 37571014 PMCID: PMC10421280 DOI: 10.3390/plants12152861] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Phosphorus (P), an essential macronutrient, plays a pivotal role in the growth and development of plants. However, the limited availability of phosphorus in soil presents significant challenges for crop productivity, especially when plants are subjected to abiotic stresses such as drought, salinity and extreme temperatures. Unraveling the intricate mechanisms through which phosphorus participates in the physiological responses of plants to abiotic stresses is essential to ensure the sustainability of agricultural production systems. This review aims to analyze the influence of phosphorus supply on various aspects of plant growth and plant development under hostile environmental conditions, with a special emphasis on stomatal development and operation. Furthermore, we discuss recently discovered genes associated with P-dependent stress regulation and evaluate the feasibility of implementing P-based agricultural practices to mitigate the adverse effects of abiotic stress. Our objective is to provide molecular and physiological insights into the role of P in regulating plants' tolerance to abiotic stresses, underscoring the significance of efficient P use strategies for agricultural sustainability. The potential benefits and limitations of P-based strategies and future research directions are also discussed.
Collapse
Affiliation(s)
- Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| | - Abu Bakar Siddique
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia;
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| |
Collapse
|
6
|
Loudari A, Latique S, Mayane A, Colinet G, Oukarroum A. Polyphosphate fertilizer impacts the enzymatic and non-enzymatic antioxidant capacity of wheat plants grown under salinity. Sci Rep 2023; 13:11212. [PMID: 37433920 DOI: 10.1038/s41598-023-38403-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023] Open
Abstract
By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity.
Collapse
Affiliation(s)
- Aicha Loudari
- Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, Lot-660 Hay Moulay, Rachid, 43150, Ben Guerir, Morocco.
- Terra Research Center, Liege University-Gembloux Agro Bio Tech Faculty, 5030, Gembloux, Belgium.
| | - Salma Latique
- Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, Lot-660 Hay Moulay, Rachid, 43150, Ben Guerir, Morocco
| | - Asmae Mayane
- Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, Lot-660 Hay Moulay, Rachid, 43150, Ben Guerir, Morocco
| | - Gilles Colinet
- Terra Research Center, Liege University-Gembloux Agro Bio Tech Faculty, 5030, Gembloux, Belgium
| | - Abdallah Oukarroum
- Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, Lot-660 Hay Moulay, Rachid, 43150, Ben Guerir, Morocco.
- High Throughput Multidisciplinary Research Laboratory, Mohammed VI Polytechnic University (UM6P), 43150, Ben Guerir, Morocco.
| |
Collapse
|
7
|
Shah ST, Basit A, Mohamed HI, Ullah I, Sajid M, Sohrab A. Der Einsatz von Mulchen bei verschiedenen Bodenbearbeitungsbedingungen reduziert den Ausstoß von Treibhausgasen – ein Überblick. GESUNDE PFLANZEN 2023; 75:455-477. [DOI: 10.1007/s10343-022-00719-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 10/26/2023]
|
8
|
Pervaiz S, Gul H, Rauf M, Mohamed HI, Ur Rehman K, Wasila H, Ahmad I, Shah ST, Basit A, Ahmad M, Akbar S, Fahad S. Screening of Linum usitatissimum Lines Using Growth Attributes, Biochemical Parameters and Ionomics Under Salinity Stress. GESUNDE PFLANZEN 2023. [DOI: 10.1007/s10343-023-00880-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 10/26/2023]
|
9
|
Sadak MS, Hanafy RS, Elkady FMAM, Mogazy AM, Abdelhamid MT. Exogenous Calcium Reinforces Photosynthetic Pigment Content and Osmolyte, Enzymatic, and Non-Enzymatic Antioxidants Abundance and Alleviates Salt Stress in Bread Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:1532. [PMID: 37050158 PMCID: PMC10097001 DOI: 10.3390/plants12071532] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
One of the main environmental stresses that hinder crop development as well as yield is salt stress, while the use of signal molecules such as calcium (Ca) has a substantial impact on reducing the detrimental effects of salt on different crop types. Therefore, a factorial pot experiment in a completely randomized design was conducted to examine the beneficial role of Ca (0, 2.5, and 5 mM) in promoting the physiological, biochemical, and growth traits of the wheat plant under three salt conditions viz. 0, 30, and 60 mM NaCl. Foliar application of Ca increased the growth of salt-stressed wheat plants through increasing photosynthetic pigments, IAA, proline, and total soluble sugars contents and improving antioxidant enzymes in addition to non-enzymatic antioxidants glutathione, phenol and flavonoids, β-carotene, and lycopene contents, thus causing decreases in the over-accumulation of free radicals (ROS). The application of Ca increased the activity of antioxidant enzymes in wheat plants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), which scavenge reactive oxygen species (ROS) and relieved salt stress. An additional salt tolerance mechanism by Ca increases the non-antioxidant activity of plants by accumulating osmolytes such as free amino acids, proline, and total soluble sugar, which maintain the osmotic adjustment of plants under salinity stress. Exogenous Ca application is a successful method for increasing wheat plants' ability to withstand salt stress, and it has a considerable impact on the growth of wheat under salt stress.
Collapse
Affiliation(s)
- Mervat Sh Sadak
- Botany Department, National Research Centre, 33 El Buhouth Street, Dokki, Cairo 12622, Egypt
| | - Rania S. Hanafy
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo 11575, Egypt
| | - Fatma M. A. M. Elkady
- Botany Department, National Research Centre, 33 El Buhouth Street, Dokki, Cairo 12622, Egypt
| | - Asmaa M. Mogazy
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo 11575, Egypt
| | - Magdi T. Abdelhamid
- Botany Department, National Research Centre, 33 El Buhouth Street, Dokki, Cairo 12622, Egypt
- Department of Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843, USA
| |
Collapse
|
10
|
Swain R, Sahoo S, Behera M, Rout GR. Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. FRONTIERS IN PLANT SCIENCE 2023; 14:1104874. [PMID: 36844040 PMCID: PMC9947512 DOI: 10.3389/fpls.2023.1104874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 05/29/2023]
Abstract
In recent times, the demand for food and feed for the ever-increasing population has achieved unparalleled importance, which cannot afford crop yield loss. Now-a-days, the unpleasant situation of abiotic stress triggers crop improvement by affecting the different metabolic pathways of yield and quality advances worldwide. Abiotic stress like drought, salinity, cold, heat, flood, etc. in plants diverts the energy required for growth to prevent the plant from shock and maintain regular homeostasis. Hence, the plant yield is drastically reduced as the energy is utilized for overcoming the stress in plants. The application of phytohormones like the classical auxins, cytokinins, ethylene, and gibberellins, as well as more recent members including brassinosteroids, jasmonic acids, etc., along with both macro and micronutrients, have enhanced significant attention in creating key benefits such as reduction of ionic toxicity, improving oxidative stress, maintaining water-related balance, and gaseous exchange modification during abiotic stress conditions. Majority of phytohormones maintain homeostasis inside the cell by detoxifying the ROS and enhancing the antioxidant enzyme activities which can enhance tolerance in plants. At the molecular level, phytohormones activate stress signaling pathways or genes regulated by abscisic acid (ABA), salicylic acid (SA), Jasmonic acid (JA), and ethylene. The various stresses primarily cause nutrient deficiency and reduce the nutrient uptake of plants. The application of plant nutrients like N, K, Ca, and Mg are also involved in ROS scavenging activities through elevating antioxidants properties and finally decreasing cell membrane leakage and increasing the photosynthetic ability by resynthesizing the chlorophyll pigment. This present review highlighted the alteration of metabolic activities caused by abiotic stress in various crops, the changes of vital functions through the application of exogenous phytohormones and nutrition, as well as their interaction.
Collapse
Affiliation(s)
- Rinny Swain
- Department of Agricultural Biotechnology, Crop Improvement Division, School of Agriculture, Gandhi University of Engineering and Technology (GIET) University, Rayagada, Odisha, India
| | - Smrutishree Sahoo
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Mamata Behera
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Gyana Ranjan Rout
- Department of Agricultural Biotechnology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
11
|
Alghamdi SA, Alharby HF, Bamagoos AA, Zaki SNS, Abu El-Hassan AMA, Desoky ESM, Mohamed IAA, Rady MM. Rebalancing Nutrients, Reinforcing Antioxidant and Osmoregulatory Capacity, and Improving Yield Quality in Drought-Stressed Phaseolus vulgaris by Foliar Application of a Bee-Honey Solution. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010063. [PMID: 36616192 PMCID: PMC9823359 DOI: 10.3390/plants12010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 06/12/2023]
Abstract
Bee-honey solution (BHS) is considered a plant growth multi-biostimulator because it is rich in osmoprotectants, antioxidants, vitamins, and mineral nutrients that can promote drought stress (DtS) resistance in common bean plants. As a novel strategy, BHS has been used in a few studies, which shows that the application of BHS can overcome the stress effects on plant productivity and can contribute significantly to bridging the gap between agricultural production and the steady increase in population under climate changes. Under sufficient watering (SW (100% of crop evapotranspiration; ETc) and DtS (60% of ETc)), the enhancing impacts of foliar application with BHS (0%, 0.5%, 1.0%, and 1.5%) on growth, productivity, yield quality, physiological-biochemical indices, antioxidative defense ingredients, and nutrient status were examined in common bean plants (cultivar Bronco). DtS considerably decreased growth and yield traits, green pod quality, and water use efficiency (WUE); however, application of BHS at all concentrations significantly increased all of these parameters under normal or DtS conditions. Membrane stability index, relative water content, nutrient contents, SPAD (chlorophyll content), and PSII efficiency (Fv/Fm, photochemical activity, and performance index) were markedly reduced under DtS; however, they increased significantly under normal or DtS conditions by foliar spraying of BHS at all concentrations. The negative impacts of DtS were due to increased oxidants [hydrogen peroxide (H2O2) and superoxide (O2•-)], electrolyte leakage (EL), and malondialdehyde (MDA). As a result, the activity of the antioxidant system (ascorbate peroxidase, glutathione reductase, catalase, superoxide dismutase, α-tocopherol, glutathione, and ascorbate) and levels of osmoprotectants (soluble protein, soluble sugars, glycine betaine, and proline) were increased. However, all BHS concentrations further increased osmoprotectant and antioxidant capacity, along with decreased MDA and EL under DtS. What is interesting in this study was that a BHS concentration of 1.0% gave the best results under SW, while a BHS concentration of 1.5% gave the best results under DtS. Therefore, a BHS concentration of 1.5% could be a viable strategy to mitigate the DtS impairment in common beans to achieve satisfactory growth, productivity, and green pod quality under DtS.
Collapse
Affiliation(s)
- Sameera A. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Atif A. Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Safi-naz S. Zaki
- Department of Water Relations and Field Irrigation, National Research Centre, Dokki, Cairo 12622, Egypt
| | | | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | | | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
12
|
Ozaktan H, Doymaz A. Mineral composition and technological and morphological performance of beans as influenced by organic seaweed-extracted fertilizers applied in different growth stages. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Loudari A, Mayane A, Zeroual Y, Colinet G, Oukarroum A. Photosynthetic performance and nutrient uptake under salt stress: Differential responses of wheat plants to contrasting phosphorus forms and rates. FRONTIERS IN PLANT SCIENCE 2022; 13:1038672. [PMID: 36438086 PMCID: PMC9684725 DOI: 10.3389/fpls.2022.1038672] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Salt stress impacts phosphorus (P) bioavailability, mobility, and its uptake by plants. Since P is involved in many key processes in plants, salinity and P deficiency could significantly cause serious damage to photosynthesis, the most essential physiological process for the growth and development of all green plants. Different approaches have been proposed and adopted to minimize the harmful effects of their combined effect. Optimising phosphorus nutrition seems to bring positive results to improve photosynthetic efficiency and nutrient uptake. The present work posed the question if soluble fertilizers allow wheat plants to counter the adverse effect of salt stress. A pot experiment was performed using a Moroccan cultivar of durum wheat: Karim. This study focused on different growth and physiological responses of wheat plants grown under the combined effect of salinity and P-availability. Two Orthophosphates (Ortho-A & Ortho-B) and one polyphosphate (Poly-B) were applied at different P levels (0, 30 and 45 ppm). Plant growth was analysed on some physiological parameters (stomatal conductance (SC), chlorophyll content index (CCI), chlorophyll a fluorescence, shoot and root biomass, and mineral uptake). Fertilized wheat plants showed a significant increase in photosynthetic performance and nutrient uptake. Compared to salt-stressed and unfertilized plants (C+), CCI increased by 93%, 81% and 71% at 30 ppm of P in plants fertilized by Poly-B, Ortho-B and Ortho-A, respectively. The highest significant SC was obtained at 45 ppm using Ortho-B fertilizer with an increase of 232% followed by 217% and 157% for both Poly-B and Ortho-A, respectively. The Photosynthetic performance index (PItot) was also increased by 128.5%, 90.2% and 38.8% for Ortho-B, Ortho-A and Poly B, respectively. In addition, Poly-B showed a significant enhancement in roots and shoots biomass (49.4% and 156.8%, respectively) compared to C+. Fertilized and salt-stressed plants absorbed more phosphorus. The P content significantly increased mainly at 45 ppm of P. Positive correlations were found between phosphorus uptake, biomass, and photosynthetic yield. The increased photochemical activity could be due to a significant enhancement in light energy absorbed by the enhanced Chl antenna. The positive effect of adequate P fertilization under salt stress was therefore evident in durum wheat plants.
Collapse
Affiliation(s)
- Aicha Loudari
- Plant Stress Physiology Laboratory–AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
- Terra Research Center, Gembloux Agro Bio Tech Faculty, Liege University (ULIEGE), Gembloux, Belgium
| | - Asmae Mayane
- Plant Stress Physiology Laboratory–AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Youssef Zeroual
- Plant Stress Physiology Laboratory–AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Gilles Colinet
- Terra Research Center, Gembloux Agro Bio Tech Faculty, Liege University (ULIEGE), Gembloux, Belgium
| | - Abdallah Oukarroum
- Plant Stress Physiology Laboratory–AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
- High Throughput Multidisciplinary Research Laboratory, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| |
Collapse
|
14
|
Sadak MS, Sekara A, Al-ashkar I, Habib-ur-Rahman M, Skalicky M, Brestic M, Kumar A, Sabagh AE, Abdelhamid MT. Exogenous aspartic acid alleviates salt stress-induced decline in growth by enhancing antioxidants and compatible solutes while reducing reactive oxygen species in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:987641. [PMID: 36325561 PMCID: PMC9619216 DOI: 10.3389/fpls.2022.987641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Salinity is the primary environmental stress that adversely affects plants' growth and productivity in many areas of the world. Published research validated the role of aspartic acid in improving plant tolerance against salinity stress. Therefore, in the present work, factorial pot trials in a completely randomized design were conducted to examine the potential role of exogenous application of aspartic acid (Asp) in increasing the tolerance of wheat (Triticum aestivum L.) plants against salt stress. Wheat plants were sown with different levels of salinity (0, 30, or 60 mM NaCl) and treated with three levels of exogenous application of foliar spray of aspartic acid (Asp) (0, 0.4, 0.6, or 0.8 mM). Results of the study indicated that salinity stress decreased growth attributes like shoot length, leaf area, and shoot biomass along with photosynthesis pigments and endogenous indole acetic acid. NaCl stress reduced the total content of carbohydrates, flavonoid, beta carotene, lycopene, and free radical scavenging activity (DPPH%). However, Asp application enhanced photosynthetic pigments and endogenous indole acetic acid, consequently improving plant leaf area, leading to higher biomass dry weight either under salt-stressed or non-stressed plants. Exogenous application of Asp, up-regulate the antioxidant system viz. antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and nitrate reductase), and non-enzymatic antioxidants (ascorbate, glutathione, total phenolic content, total flavonoid content, beta carotene, lycopene) contents resulted in declined in reactive oxygen species (ROS). The decreased ROS in Asp-treated plants resulted in reduced hydrogen peroxide, lipid peroxidation (MDA), and aldehyde under salt or non-salt stress conditions. Furthermore, Asp foliar application increased compatible solute accumulation (amino acids, proline, total soluble sugar, and total carbohydrates) and increased radical scavenging activity of DPPH and enzymatic ABTS. Results revealed that the quadratic regression model explained 100% of the shoot dry weight (SDW) yield variation. With an increase in Asp application level by 1.0 mM, the SDW was projected to upsurge through 956 mg/plant. In the quadratic curve model, if Asp is applied at a level of 0.95 mM, the SDW is probably 2.13 g plant-1. This study concluded that the exogenous application of aspartic acid mitigated the adverse effect of salt stress damage on wheat plants and provided economic benefits.
Collapse
Affiliation(s)
| | - Agnieszka Sekara
- Department of Horticulture, The University of Agriculture in Krakow, Kraków, Poland
| | - Ibrahim Al-ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Habib-ur-Rahman
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Crop Science, Bonn, Germany
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. HarisinghGour Central University, Sagar, MP, India
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | |
Collapse
|
15
|
El-Beltagi HS, Basit A, Mohamed HI, Ali I, Ullah S, Kamel EAR, Shalaby TA, Ramadan KMA, Alkhateeb AA, Ghazzawy HS. Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. AGRONOMY 2022; 12:1881. [DOI: 10.3390/agronomy12081881] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
This research was carried out in order to demonstrate that mulching the ground helps to conserve water, because agricultural sustainability in dryland contexts is threatened by drought, heat stress, and the injudicious use of scarce water during the cropping season by minimizing surface evaporation. Improving soil moisture conservation is an ongoing priority in crop outputs where water resources are restricted and controlled. One of the reasons for the desire to use less water in agriculture is the rising demand brought on by the world’s growing population. In this study, the use of organic or biodegradable mulches was dominated by organic materials, while inorganic mulches are mostly comprised of plastic-based components. Plastic film, crop straw, gravel, volcanic ash, rock pieces, sand, concrete, paper pellets, and livestock manures are among the materials put on the soil surface. Mulching has several essential applications, including reducing soil water loss and soil erosion, enriching soil fauna, and improving soil properties and nutrient cycling in the soil. It also reduces the pH of the soil, which improves nutrient availability. Mulching reduces soil deterioration by limiting runoff and soil loss, and it increases soil water availability by reducing evaporation, managing soil temperature, or reducing crop irrigation requirements. This review paper extensively discusses the benefits of organic or synthetic mulches for crop production, as well as the uses of mulching in soil and water conservation. As a result, it is very important for farmers to choose mulching rather than synthetic applications.
Collapse
|
16
|
Abd El-hady MA, Abd-Elkrem YM, Rady MOA, Mansour E, El-Tarabily KA, AbuQamar SF, El-temsah ME. Impact on plant productivity under low-fertility sandy soil in arid environment by revitalization of lentil roots. FRONTIERS IN PLANT SCIENCE 2022; 13:937073. [PMID: 35991439 PMCID: PMC9386484 DOI: 10.3389/fpls.2022.937073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Lentil is one of the essential legume crops, which provides protein for humans and animals. This legume can improve soil fertility through nitrogen fixation, which is imperative in low-fertility soils. The growth and productivity of lentil could be enhanced through improving nutrition and root revitalization. Therefore, the objective of this study was to assess the impact of root activator (RA) and phosphorus (P) application on morphological, physiological, agronomic, and quality traits of lentil under newly reclaimed low-fertility sandy soil in an arid environment. The RA was applied at four levels of 0 (RA0-untreated control), 1.25 (RA1), 2.5 (RA2), and 3.75 (RA3) l ha-1. RA contained 9% potassium humate, 1,600 ppm indole butyric acid, 200 ppm gibberellic acid, and 200 ppm naphthalene acetic acid. The recommended rate of phosphorus (P) fertilization in the newly reclaimed low-fertility sandy soil (75 kg P2O5 ha-1) was applied, and its amount was increased and decreased by 25 kg P2O5 ha-1 vs. non-added control. Thus, P rates were applied at four rates 0 (P0; control), 50 (P1), 75 (P2), and 100 (P3) kg phosphorus pentoxide (P2O5) ha-1. Our results revealed that treated lentil plants with the high levels of both treatments (RA3 and P3) exhibited superiority in root measurements (root length, total number of nodules plant-1, number of active nodules plant-1, dry weights of active nodules, and total root), nitrogenase activity, chlorophyll a and b, carotenoids, yield traits, and seed proteins and carbohydrates. However, the recommended P level (75 kg P2O5 ha-1, P2) under the high level of RA (3.75 l ha-1, RA3) displayed non-significant differences in yield traits (plant height, 1,000-seed weight, seed yield ha-1) and quality traits (protein and carbohydrate) with the high P level (100 kg P2O5 ha-1, P3). Accordingly, its recommended economically and environmentally to use this coapplication of RA3 and P3 in low-fertility soil for better lentil growth, and seed yield and quality.
Collapse
Affiliation(s)
| | | | - Mohamed O. A. Rady
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Elsayed Mansour
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
17
|
Mitigation of Salinity Stress Effects on Broad Bean Productivity Using Calcium Phosphate Nanoparticles Application. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010075] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Water salinity is one of the major abiotic stresses, and the use of saline water for the agricultural sector will incur greater demand in the coming decades. Recently, nanoparticles (NPs) have been used for developing numerous plant fertilizers as a smart and powerful form of material with dual action that can alleviate the adverse effects of salinity and provide the plant with more efficient nutrient forms. This study evaluated the influence of calcium phosphate NPs (CaP-NPs) as a soil fertilizer application on the production and bioactive compounds of broad bean plants under salinity stress. Results showed that salinity had deleterious effects on plant yield with 55.9% reduction compared to control. On the other hand, CaP-NPs dramatically improved plant yield by 30% compared to conventional fertilizer under salinity stress. This improvement could be attributed to significantly higher enhancement in total soluble sugars, antioxidant enzymes, proline content, and total phenolics recorded use of nano-fertilizer compared to conventional use under salt stress. Additionally, nano-fertilizer reflected better mitigatory effects on plant growth parameters, photosynthetic pigments, and oxidative stress indicators (MDA and H2O2). Therefore, our results support the replacement of traditional fertilizers comprising Ca2+ or P with CaP-nano-fertilizers for higher plant productivity and sustainability under salt stress.
Collapse
|