1
|
Bhosle A, Jackson MI, Walsh AM, Franzosa EA, Badri DV, Huttenhower C. Response of the gut microbiome and metabolome to dietary fiber in healthy dogs. mSystems 2025; 10:e0045224. [PMID: 39714168 PMCID: PMC11748496 DOI: 10.1128/msystems.00452-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/21/2024] [Indexed: 12/24/2024] Open
Abstract
Dietary fiber confers multiple health benefits originating from the expansion of beneficial gut microbial activity. However, very few studies have established the metabolic consequences of interactions among specific fibers, microbiome composition, and function in either human or representative animal models. In a study design reflective of realistic population dietary variation, fecal metagenomic and metabolomic profiles were analyzed from healthy dogs fed 12 test foods containing different fiber sources and quantities (5-13% as-fed basis). Taxa and functions were identified whose abundances were associated either with overall fiber intake or with specific fiber compositions. Fourteen microbial species were significantly enriched in response to ≥1 specific fiber source; enrichment of fiber-derived metabolites was more pronounced in response to these fiber sources. Positively associated fecal metabolites, including short-chain fatty acids, acylglycerols, fiber bound sugars, and polyphenols, co-occurred with microbes enriched in specific food groups. Critically, the specific metabolite pools responsive to differential fiber intake were dependent on differences both in individual microbial community membership and in overall ecological configuration. This helps to explain, for the first time, differences in microbiome-diet associations observed in companion animal epidemiology. Thus, our study corroborates findings in human cohorts and reinforces the role of personalized microbiomes even in seemingly phenotypically homogeneous subjects. IMPORTANCE Consumption of dietary fiber changes the composition of the gut microbiome and, to a larger extent, the associated metabolites. Production of health-relevant metabolites such as short-chain fatty acids from fiber depends both on the consumption of a specific fiber and on the enrichment of beneficial metabolite-producing species in response to it. Even in a seemingly homogeneous population, the benefit received from fiber consumption is personalized and emphasizes specific fiber-microbe-host interactions. These observations are relevant for both population-wide and personalized nutrition applications.
Collapse
Affiliation(s)
- Amrisha Bhosle
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Aaron M. Walsh
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Eric A. Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Pignataro G, Crisi PE, Landolfi E, Belà B, Fusaro I, Clerico L, Gramenzi A. Homemade Diet as a Paramount for Dogs' Health: A Descriptive Analysis. Vet Sci 2024; 11:438. [PMID: 39330817 PMCID: PMC11435771 DOI: 10.3390/vetsci11090438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Pet nutrition awareness has risen enormously, with an increasing interest in homemade diets aimed at controlling food composition. The literature in this field is scarce, especially regarding the homemade diet's long-term effects on pathological conditions. This prospective study encompassed 167 healthy and sick dogs subjected to a customized dietary plan based on homemade food. After an initial visit, dog owners provided questionnaires with follow-up data on their perceptions of physical sign changes or symptom modifications. A total of 104 (62%) subjects maintained the homemade diet, while 63 reverted to their previous diet. The median follow-up was 14 months. Out of 31 healthy dogs that continued the nutritional plan, 70% exhibited improvements in their coat condition and 47% a decrease in evacuation frequency. Regarding weight loss goals, 67% of dogs achieved their target. The 67 pathological dogs that completed the follow-up were primarily affected by gastrointestinal and dermatological disorders. Dogs with chronic enteropathy improved their symptoms in 95% of the cases, subjects with dermatological pathologies in 83%, and patients presenting both disorders in 100%. These clinical results are promising. Personalized and well-balanced homemade diets noticeably enhanced the overall pet's health, with an almost complete remission of symptoms in pathological dogs.
Collapse
Affiliation(s)
- Giulia Pignataro
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Paolo Emidio Crisi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Elena Landolfi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Benedetta Belà
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Isa Fusaro
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | | | - Alessandro Gramenzi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
3
|
Németh K, Sterczer Á, Kiss DS, Lányi RK, Hemző V, Vámos K, Bartha T, Buzás A, Lányi K. Determination of Bile Acids in Canine Biological Samples: Diagnostic Significance. Metabolites 2024; 14:178. [PMID: 38668306 PMCID: PMC11052161 DOI: 10.3390/metabo14040178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The comprehensive examination of bile acids is of paramount importance across various fields of health sciences, influencing physiology, microbiology, internal medicine, and pharmacology. While enzymatic reaction-based photometric methods remain fundamental for total BA measurements, there is a burgeoning demand for more sophisticated techniques such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) for comprehensive BA profiling. This evolution reflects a need for nuanced diagnostic assessments in clinical practice. In canines, a BA assessment involves considering factors, such as food composition, transit times, and breed-specific variations. Multiple matrices, including blood, feces, urine, liver tissue, and gallbladder bile, offer insights into BA profiles, yet interpretations remain complex, particularly in fecal analysis due to sampling challenges and breed-specific differences. Despite ongoing efforts, a consensus regarding optimal matrices and diagnostic thresholds remains elusive, highlighting the need for further research. Emphasizing the scarcity of systematic animal studies and underscoring the importance of ap-propriate sampling methodologies, our review advocates for targeted investigations into BA alterations in canine pathology, promising insights into pathomechanisms, early disease detection, and therapeutic avenues.
Collapse
Affiliation(s)
- Krisztián Németh
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Ágnes Sterczer
- Department of Internal Medicine, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary;
| | - Dávid Sándor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Réka Katalin Lányi
- Faculty of Pharmacy, University of Szeged, Zrínyi u. 9, H-6720 Szeged, Hungary;
| | - Vivien Hemző
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Kriszta Vámos
- Department of Internal Medicine, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary;
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Anna Buzás
- Institute of Food Chain Science, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (A.B.); (K.L.)
| | - Katalin Lányi
- Institute of Food Chain Science, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (A.B.); (K.L.)
| |
Collapse
|
4
|
Tate DE, Tanprasertsuk J, Jones RB, Maughan H, Chakrabarti A, Khafipour E, Norton SA, Shmalberg J, Honaker RW. A Randomized Controlled Trial to Evaluate the Impact of a Novel Probiotic and Nutraceutical Supplement on Pruritic Dermatitis and the Gut Microbiota in Privately Owned Dogs. Animals (Basel) 2024; 14:453. [PMID: 38338095 PMCID: PMC10854619 DOI: 10.3390/ani14030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Pruritic dermatitis (PD) is a common presentation of canine allergic skin diseases, with diversity in severity and treatment response due to complex etiopathogenesis. Evidence suggests the gut microbiota (GM) may contribute to the development of canine allergies. A 10-week double-blind randomized controlled trial evaluated a novel probiotic and nutraceutical blend (PNB) on clinical signs of skin allergy, health measures, and the GM of privately owned self-reported pruritic dogs. A total of 105 dogs were enrolled, with 62 included in pruritus and health analysis and 50 in microbiome analysis. The PNB supported greater improvement of owner-assessed clinical signs of PD at week 2 than the placebo (PBO). More dogs that received the PNB shifted to normal pruritus (digital PVAS10-N: <2) by week 4, compared to week 7 for the PBO. While a placebo effect was identified, clinical differences were supported by changes in the GM. The PNB enriched three probiotic bacteria and reduced abundances of species associated with negative effects. The PBO group demonstrated increased abundances of pathogenic species and reduced abundances of several beneficial species. This trial supports the potential of the PNB as a supplemental intervention in the treatment of PD; however, further investigation is warranted, with stricter diagnostic criteria, disease biomarkers and direct veterinary examination.
Collapse
Affiliation(s)
- Devon E. Tate
- NomNomNow Inc., Nashville, TN 37207, USA; (D.E.T.); (J.T.); (R.B.J.)
| | | | - Roshonda B. Jones
- NomNomNow Inc., Nashville, TN 37207, USA; (D.E.T.); (J.T.); (R.B.J.)
| | | | | | - Ehsan Khafipour
- Cargill Inc., Wayzata, MN 55391, USA; (A.C.); (E.K.); (S.A.N.)
| | | | - Justin Shmalberg
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Ryan W. Honaker
- NomNomNow Inc., Nashville, TN 37207, USA; (D.E.T.); (J.T.); (R.B.J.)
| |
Collapse
|
5
|
Branck T, Hu Z, Nickols WA, Walsh AM, Bhosle A, Short MI, Nearing JT, Asnicar F, McIver LJ, Maharjan S, Rahnavard A, Louyakis AS, Badri DV, Brockel C, Thompson KN, Huttenhower C. Comprehensive profile of the companion animal gut microbiome integrating reference-based and reference-free methods. THE ISME JOURNAL 2024; 18:wrae201. [PMID: 39394961 PMCID: PMC11523182 DOI: 10.1093/ismejo/wrae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
The gut microbiome of companion animals is relatively underexplored, despite its relevance to animal health, pet owner health, and basic microbial community biology. Here, we provide the most comprehensive analysis of the canine and feline gut microbiomes to date, incorporating 2639 stool shotgun metagenomes (2272 dog and 367 cat) spanning 14 publicly available datasets (n = 730) and 8 new study populations (n = 1909). These are compared with 238 and 112 baseline human gut metagenomes from the Human Microbiome Project 1-II and a traditionally living Malagasy cohort, respectively, processed in a manner identical to the animal metagenomes. All microbiomes were characterized using reference-based taxonomic and functional profiling, as well as de novo assembly yielding metagenomic assembled genomes clustered into species-level genome bins. Companion animals shared 184 species-level genome bins not found in humans, whereas 198 were found in all three hosts. We applied novel methodology to distinguish strains of these shared organisms either transferred or unique to host species, with phylogenetic patterns suggesting host-specific adaptation of microbial lineages. This corresponded with functional divergence of these lineages by host (e.g. differences in metabolic and antibiotic resistance genes) likely important to companion animal health. This study provides the largest resource to date of companion animal gut metagenomes and greatly contributes to our understanding of the "One Health" concept of a shared microbial environment among humans and companion animals, affecting infectious diseases, immune response, and specific genetic elements.
Collapse
Affiliation(s)
- Tobyn Branck
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Science and Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | - Zhiji Hu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - William A Nickols
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Aaron M Walsh
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Amrisha Bhosle
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Meghan I Short
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Jacob T Nearing
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | | | - Lauren J McIver
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Sagun Maharjan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Artemis S Louyakis
- Science and Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | - Dayakar V Badri
- Science and Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | - Christoph Brockel
- Science and Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | - Kelsey N Thompson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
6
|
Geary EL, Oba PM, Applegate CC, Clark LV, Fields CJ, Swanson KS. Effects of a mildly cooked human-grade dog diet on gene expression, skin and coat health measures, and fecal microbiota of healthy adult dogs. J Anim Sci 2022; 100:skac265. [PMID: 35965387 PMCID: PMC9527297 DOI: 10.1093/jas/skac265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Purported benefits of human-grade pet foods include reduced inflammation, enhanced coat quality, and improved gut health, but research is scarce. Therefore, we compared gene expression, skin and coat health measures, and the fecal microbiome of dogs consuming a mildly cooked human-grade or extruded kibble diet. Twenty beagles (BW = 10.25 ± 0.82 kg; age = 3.85 ± 1.84 yr) were used in a completely randomized design. Test diets included: 1) chicken and brown rice recipe [feed-grade; extruded; blue buffalo (BB)]; and 2) chicken and white rice [human-grade; mildly cooked; Just Food for Dogs (JFFD)]. The study consisted of a 4-week baseline when all dogs ate BB, and a 12-week treatment phase when dogs were randomized to either diet (n = 10/group). After the baseline and treatment phases, fresh fecal samples were scored and collected for pH, dry matter (DM), and microbiome analysis; blood samples were collected for gene expression analysis; hair samples were microscopically imaged; and skin was analyzed for delayed-type hypersensitivity (DTH), sebum concentration, hydration status, and transepidermal water loss (TEWL). Data were analyzed as a change from baseline (CFB) using the Mixed Models procedure of SAS (version 9.4). At baseline, fecal pH was higher (P < 0.05) and hair surface score, superoxide dismutase (SOD) expression, and tumor necrosis factor-α (TNF-α) expression was lower (P < 0.05) in dogs allotted to JFFD. The decrease in CFB fecal pH and DM was greater (P < 0.05) in dogs fed JFFD, but fecal scores were not different. The increase in CFB hair surface score was higher (P < 0.05) in dogs fed JFFD. The decrease in CFB TEWL (back region) was greater (P < 0.05) in dogs fed JFFD, but TEWL (inguinal and ear regions), hydration status, and sebum concentrations in all regions were not different. Hair cortex scores and DTH responses were not affected by diet. The increase in CFB gene expression of SOD, COX-2, and TNF-α was greater (P < 0.05) in dogs fed JFFD. PCoA plots based on Bray-Curtis distances of bacterial genera and species showed small shifts over time in dogs fed BB, but dramatic shifts in those fed JFFD. JFFD increased (adj. P < 0.05) relative abundances of 4 bacterial genera, 11 bacterial species, 68 KEGG pathways, and 167 MetaCyc pathways, and decreased (adj. P < 0.05) 16 genera, 25 species, 98 KEGG pathways, and 87 MetaCyc pathways. In conclusion, the JFFD diet dramatically shifted the fecal microbiome but had minor effects on skin and coat measures and gene expression.
Collapse
Affiliation(s)
- Elizabeth L Geary
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Catherine C Applegate
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lindsay V Clark
- High Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher J Fields
- High Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Li Z, Sun Q, Li Y, Guan Z, Wei J, Li B, Liu K, Shao D, Mi R, Liu H, Qiu Y, Ma Z. Analysis and Comparison of Gut Microbiome in Young Detection Dogs. Front Microbiol 2022; 13:872230. [PMID: 35516435 PMCID: PMC9063727 DOI: 10.3389/fmicb.2022.872230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
The detection dogs are well-known for their excellent capabilities to sense different kinds of smells, which can play an important role in completing various searching and rescuing missions. The recent studies have demonstrated that the excellent olfactory function of detection dogs might be related with the gut microbes via the bidirectional communications between the gastrointestinal tract and the brain. In this study, the gut microbial communities of three types of breeds of detection dogs (Springer Spaniel, Labrador Retriever, and German Shepherd) were studied and compared. The results revealed that the richness and the diversity of gut microbiome German Shepherd dogs were significantly higher than the Labrador Retriever dogs and the Springer Spaniel dogs. At the phylum level, the most predominant gut microbial communities of the detection dogs were comprised of Fusobacteriota, Bacteroidetes, Firmicutes, Proteobacteria, Campilobacterota, and Actinobacteriota. At the genus level the most predominant gut microbial communities were comprised of Fusobacterium, Megamonas, Prevotella, Alloprevotella, Bacteroides, Haemophilus, Anaerobiospirillum, Helicobacter, Megasphaera, Peptoclostridium, Phascolarctobacterium, and Streptococcus. However, the gut microbial communities of the three dogs group were also obviously different. The mean relative abundance of Fusobacterium, Prevotella, Alloprevotella, Megamonas, Bacteroides, and Phascolarctobacterium presented significant differences in the three groups. According to the portraits and characteristics of the gut microbiome in young detection dogs, multiple kinds of nutritional interventions could be applied to manipulate the gut microbiota, with the aim of improving the health states and the olfactory performances.
Collapse
Affiliation(s)
- Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Qing Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Yuhao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Zhixin Guan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Rongsheng Mi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Haixia Liu
- Beijing Huayuan Biotechnology Research Institute, Beijing, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- *Correspondence: Zhiyong Ma
| |
Collapse
|