1
|
Wang X, Wang S. ACP-PDAFF: Pretrained model and dual-channel attentional feature fusion for anticancer peptides prediction. Comput Biol Chem 2024; 112:108141. [PMID: 38996756 DOI: 10.1016/j.compbiolchem.2024.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/26/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Anticancer peptides(ACPs) have attracted significant interest as a novel method of treating cancer due to their ability to selectively kill cancer cells without damaging normal cells. Many artificial intelligence-based methods have demonstrated impressive performance in predicting ACPs. Nevertheless, the limitations of existing methods in feature engineering include handcrafted features driven by prior knowledge, insufficient feature extraction, and inefficient feature fusion. In this study, we propose a model based on a pretrained model, and dual-channel attentional feature fusion(DAFF), called ACP-PDAFF. Firstly, to reduce the heavy dependence on expert knowledge-based handcrafted features, binary profile features (BPF) and physicochemical properties features(PCPF) are used as inputs to the transformer model. Secondly, aimed at learning more diverse feature informations of ACPs, a pretrained model ProtBert is utilized. Thirdly, for better fusion of different feature channels, DAFF is employed. Finally, to evaluate the performance of the model, we compare it with other methods on five benchmark datasets, including ACP-Mixed-80 dataset, Main and Alternate datasets of AntiCP 2.0, LEE and Independet dataset, and ACPred-Fuse dataset. And the accuracies obtained by ACP-PDAFF are 0.86, 0.80, 0.94, 0.97 and 0.95 on five datasets, respectively, higher than existing methods by 1% to 12%. Therefore, by learning rich feature informations and effectively fusing different feature channels, ACD-PDAFF achieves outstanding performance. Our code and the datasets are available at https://github.com/wongsing/ACP-PDAFF.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shunfang Wang
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China.
| |
Collapse
|
2
|
Ahmed F, Sharma A, Shatabda S, Dehzangi I. DeepPhoPred: Accurate Deep Learning Model to Predict Microbial Phosphorylation. Proteins 2024. [PMID: 39239684 DOI: 10.1002/prot.26734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 09/07/2024]
Abstract
Phosphorylation is a substantial posttranslational modification of proteins that refers to adding a phosphate group to the amino acid side chain after translation process in the ribosome. It is vital to coordinate cellular functions, such as regulating metabolism, proliferation, apoptosis, subcellular trafficking, and other crucial physiological processes. Phosphorylation prediction in a microbial organism can assist in understanding pathogenesis and host-pathogen interaction, drug and antibody design, and antimicrobial agent development. Experimental methods for predicting phosphorylation sites are costly, slow, and tedious. Hence low-cost and high-speed computational approaches are highly desirable. This paper presents a new deep learning tool called DeepPhoPred for predicting microbial phospho-serine (pS), phospho-threonine (pT), and phospho-tyrosine (pY) sites. DeepPhoPred incorporates a two-headed convolutional neural network architecture with the squeeze and excitation blocks followed by fully connected layers that jointly learn significant features from the peptide's structural and evolutionary information to predict phosphorylation sites. Our empirical results demonstrate that DeepPhoPred significantly outperforms the existing microbial phosphorylation site predictors with its highly efficient deep-learning architecture. DeepPhoPred as a standalone predictor, all its source codes, and our employed datasets are publicly available at https://github.com/faisalahm3d/DeepPhoPred.
Collapse
Affiliation(s)
- Faisal Ahmed
- Digital Health Unit, NVISION Systems and Technologies SL, Barcelona, Spain
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, Tarragona, Spain
| | - Alok Sharma
- Laboratory of Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Queensland, Australia
- College of Informatics, Korea University, Seoul, South Korea
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Japan
| | - Swakkhar Shatabda
- Department of Computer Science and Engineering, BRAC University, Dhaka, Bangladesh
| | - Iman Dehzangi
- Department of Computer Science, Rutgers University, Camden, New Jersey, USA
- Center for Computational and Integrative Biology (CCIB), Rutgers University, Camden, New Jersey, USA
| |
Collapse
|
3
|
Arif M, Musleh S, Fida H, Alam T. PLMACPred prediction of anticancer peptides based on protein language model and wavelet denoising transformation. Sci Rep 2024; 14:16992. [PMID: 39043738 PMCID: PMC11266708 DOI: 10.1038/s41598-024-67433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Anticancer peptides (ACPs) perform a promising role in discovering anti-cancer drugs. The growing research on ACPs as therapeutic agent is increasing due to its minimal side effects. However, identifying novel ACPs using wet-lab experiments are generally time-consuming, labor-intensive, and expensive. Leveraging computational methods for fast and accurate prediction of ACPs would harness the drug discovery process. Herein, a machine learning-based predictor, called PLMACPred, is developed for identifying ACPs from peptide sequence only. PLMACPred adopted a set of encoding schemes representing evolutionary-property, composition-property, and protein language model (PLM), i.e., evolutionary scale modeling (ESM-2)- and ProtT5-based embedding to encode peptides. Then, two-dimensional (2D) wavelet denoising (WD) was employed to remove the noise from extracted features. Finally, ensemble-based cascade deep forest (CDF) model was developed to identify ACP. PLMACPred model attained superior performance on all three benchmark datasets, namely, ACPmain, ACPAlter, and ACP740 over tenfold cross validation and independent dataset. PLMACPred outperformed the existing models and improved the prediction accuracy by 18.53%, 2.4%, 7.59% on ACPmain, ACPalter, ACP740 dataset, respectively. We showed that embedding from ProtT5 and ESM-2 was capable of capturing better contextual information from the entire sequence than the other encoding schemes for ACP prediction. For the explainability of proposed model, SHAP (SHapley Additive exPlanations) method was used to analyze the feature effect on the ACP prediction. A list of novel sequence motifs was proposed from the ACP sequence using MEME suites. We believe, PLMACPred will support in accelerating the discovery of novel ACPs as well as other activities of microbial peptides.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Saleh Musleh
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Huma Fida
- Department of Microbiology, Abdul Wali Khan University, Mardan, KPK, Pakistan
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
4
|
Bhattarai S, Tayara H, Chong KT. Advancing Peptide-Based Cancer Therapy with AI: In-Depth Analysis of State-of-the-Art AI Models. J Chem Inf Model 2024; 64:4941-4957. [PMID: 38874445 DOI: 10.1021/acs.jcim.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Anticancer peptides (ACPs) play a vital role in selectively targeting and eliminating cancer cells. Evaluating and comparing predictions from various machine learning (ML) and deep learning (DL) techniques is challenging but crucial for anticancer drug research. We conducted a comprehensive analysis of 15 ML and 10 DL models, including the models released after 2022, and found that support vector machines (SVMs) with feature combination and selection significantly enhance overall performance. DL models, especially convolutional neural networks (CNNs) with light gradient boosting machine (LGBM) based feature selection approaches, demonstrate improved characterization. Assessment using a new test data set (ACP10) identifies ACPred, MLACP 2.0, AI4ACP, mACPred, and AntiCP2.0_AAC as successive optimal predictors, showcasing robust performance. Our review underscores current prediction tool limitations and advocates for an omnidirectional ACP prediction framework to propel ongoing research.
Collapse
Affiliation(s)
- Sadik Bhattarai
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju-si, 54896 Jeollabuk-do, South Korea
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju-si, 54896 Jeollabuk-do, South Korea
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju-si, 54896 Jeollabuk-do, South Korea
- Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju-si, 54896 Jeollabuk-do, South Korea
| |
Collapse
|
5
|
Song H, Lin X, Zhang H, Yin H. ACP-ESM2: The prediction of anticancer peptides based on pre-trained classifier. Comput Biol Chem 2024; 110:108091. [PMID: 38735271 DOI: 10.1016/j.compbiolchem.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
Anticancer peptides (ACPs) are a type of protein molecule that has anti-cancer activity and can inhibit cancer cell growth and survival. Traditional classification approaches for ACPs are expensive and time-consuming. This paper proposes a pre-trained classifier model, ESM2-GRU, for ACP prediction to make it easier to predict ACPs, gain a better understanding of the structural and functional differences of anti-cancer peptides, and optimize the design for the development of more effective anti-cancer treatment strategies. The model is made up of the ESM2 pre-trained model, a bidirectional GRU recurrent neural network, and a fully connected layer. ACP sequences are first fed into the ESM2 model, which then expands the dimensions before feeding the findings back into the bidirectional GRU recurrent neural network. Finally, the fully connected layer generates the ultimate output. Experimental validation demonstrates that the ESM2-GRU model greatly improves classification performance on the benchmark dataset ACP606, with AUC, ACC, and MCC values of 0.975, 0.852, and 0.738, respectively. This exceptional prediction potential helps to identify specific types of anti-cancer peptides, improving their targeting and selectivity and, therefore, furthering the development of tailored medicine and treatments.
Collapse
Affiliation(s)
- Huijia Song
- School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Xiaozhu Lin
- School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Huainian Zhang
- School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Huijuan Yin
- School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
6
|
Li C, Jin K. Chemical Strategies towards the Development of Effective Anticancer Peptides. Curr Med Chem 2024; 31:1839-1873. [PMID: 37170992 DOI: 10.2174/0929867330666230426111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/28/2023] [Accepted: 02/24/2023] [Indexed: 05/13/2023]
Abstract
Cancer is increasingly recognized as one of the primary causes of death and has become a multifaceted global health issue. Modern medical science has made significant advancements in the diagnosis and therapy of cancer over the past decade. The detrimental side effects, lack of efficacy, and multidrug resistance of conventional cancer therapies have created an urgent need for novel anticancer therapeutics or treatments with low cytotoxicity and drug resistance. The pharmaceutical groups have recognized the crucial role that peptide therapeutic agents can play in addressing unsatisfied healthcare demands and how these become great supplements or even preferable alternatives to biological therapies and small molecules. Anticancer peptides, as a vibrant therapeutic strategy against various cancer cells, have demonstrated incredible anticancer potential due to high specificity and selectivity, low toxicity, and the ability to target the surface of traditional "undruggable" proteins. This review will provide the research progression of anticancer peptides, mainly focusing on the discovery and modifications along with the optimization and application of these peptides in clinical practice.
Collapse
Affiliation(s)
- Cuicui Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Kang Jin
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
7
|
Sun M, Hu H, Pang W, Zhou Y. ACP-BC: A Model for Accurate Identification of Anticancer Peptides Based on Fusion Features of Bidirectional Long Short-Term Memory and Chemically Derived Information. Int J Mol Sci 2023; 24:15447. [PMID: 37895128 PMCID: PMC10607064 DOI: 10.3390/ijms242015447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/10/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Anticancer peptides (ACPs) have been proven to possess potent anticancer activities. Although computational methods have emerged for rapid ACPs identification, their accuracy still needs improvement. In this study, we propose a model called ACP-BC, a three-channel end-to-end model that utilizes various combinations of data augmentation techniques. In the first channel, features are extracted from the raw sequence using a bidirectional long short-term memory network. In the second channel, the entire sequence is converted into a chemical molecular formula, which is further simplified using Simplified Molecular Input Line Entry System notation to obtain deep abstract features through a bidirectional encoder representation transformer (BERT). In the third channel, we manually selected four effective features according to dipeptide composition, binary profile feature, k-mer sparse matrix, and pseudo amino acid composition. Notably, the application of chemical BERT in predicting ACPs is novel and successfully integrated into our model. To validate the performance of our model, we selected two benchmark datasets, ACPs740 and ACPs240. ACP-BC achieved prediction accuracy with 87% and 90% on these two datasets, respectively, representing improvements of 1.3% and 7% compared to existing state-of-the-art methods on these datasets. Therefore, systematic comparative experiments have shown that the ACP-BC can effectively identify anticancer peptides.
Collapse
Affiliation(s)
- Mingwei Sun
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (M.S.); (H.H.)
| | - Haoyuan Hu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (M.S.); (H.H.)
| | - Wei Pang
- School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK;
| | - You Zhou
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (M.S.); (H.H.)
- College of Software, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Cao R, Hu W, Wei P, Ding Y, Bin Y, Zheng C. FFMAVP: a new classifier based on feature fusion and multitask learning for identifying antiviral peptides and their subclasses. Brief Bioinform 2023; 24:bbad353. [PMID: 37861174 DOI: 10.1093/bib/bbad353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023] Open
Abstract
Antiviral peptides (AVPs) are widely found in animals and plants, with high specificity and strong sensitivity to drug-resistant viruses. However, due to the great heterogeneity of different viruses, most of the AVPs have specific antiviral activities. Therefore, it is necessary to identify the specific activities of AVPs on virus types. Most existing studies only identify AVPs, with only a few studies identifying subclasses by training multiple binary classifiers. We develop a two-stage prediction tool named FFMAVP that can simultaneously predict AVPs and their subclasses. In the first stage, we identify whether a peptide is AVP or not. In the second stage, we predict the six virus families and eight species specifically targeted by AVPs based on two multiclass tasks. Specifically, the feature extraction module in the two-stage task of FFMAVP adopts the same neural network structure, in which one branch extracts features based on amino acid feature descriptors and the other branch extracts sequence features. Then, the two types of features are fused for the following task. Considering the correlation between the two tasks of the second stage, a multitask learning model is constructed to improve the effectiveness of the two multiclass tasks. In addition, to improve the effectiveness of the second stage, the network parameters trained through the first-stage data are used to initialize the network parameters in the second stage. As a demonstration, the cross-validation results, independent test results and visualization results show that FFMAVP achieves great advantages in both stages.
Collapse
Affiliation(s)
- Ruifen Cao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Computer Science and Technology, Anhui University
| | - Weiling Hu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Computer Science and Technology, Anhui University
| | - Pijing Wei
- Institutes of Physical Science and Information Technology, Anhui University
| | - Yun Ding
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University
| | - Yannan Bin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University
| | - Chunhou Zheng
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University
| |
Collapse
|
9
|
Yuan Q, Chen K, Yu Y, Le NQK, Chua MCH. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding. Brief Bioinform 2023; 24:6987656. [PMID: 36642410 DOI: 10.1093/bib/bbac630] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Anticancer peptides (ACPs) are the types of peptides that have been demonstrated to have anticancer activities. Using ACPs to prevent cancer could be a viable alternative to conventional cancer treatments because they are safer and display higher selectivity. Due to ACP identification being highly lab-limited, expensive and lengthy, a computational method is proposed to predict ACPs from sequence information in this study. The process includes the input of the peptide sequences, feature extraction in terms of ordinal encoding with positional information and handcrafted features, and finally feature selection. The whole model comprises of two modules, including deep learning and machine learning algorithms. The deep learning module contained two channels: bidirectional long short-term memory (BiLSTM) and convolutional neural network (CNN). Light Gradient Boosting Machine (LightGBM) was used in the machine learning module. Finally, this study voted the three models' classification results for the three paths resulting in the model ensemble layer. This study provides insights into ACP prediction utilizing a novel method and presented a promising performance. It used a benchmark dataset for further exploration and improvement compared with previous studies. Our final model has an accuracy of 0.7895, sensitivity of 0.8153 and specificity of 0.7676, and it was increased by at least 2% compared with the state-of-the-art studies in all metrics. Hence, this paper presents a novel method that can potentially predict ACPs more effectively and efficiently. The work and source codes are made available to the community of researchers and developers at https://github.com/khanhlee/acp-ope/.
Collapse
Affiliation(s)
- Qitong Yuan
- Institute of Systems Science, National University of Singapore, 25 Heng Mui Keng Terrace, 119615, Singapore, Singapore
| | - Keyi Chen
- Institute of Systems Science, National University of Singapore, 25 Heng Mui Keng Terrace, 119615, Singapore, Singapore
| | - Yimin Yu
- Institute of Systems Science, National University of Singapore, 25 Heng Mui Keng Terrace, 119615, Singapore, Singapore
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, 106, Taipei, Taiwan.,Research Center for Artificial Intelligence in Medicine, Taipei Medical University, 250 Wuxing St, 106, Taipei, Taiwan.,Translational Imaging Research Center, Taipei Medical University Hospital, 252 Wuxing St, 110, Taipei, Taiwan
| | - Matthew Chin Heng Chua
- Institute of Systems Science, National University of Singapore, 25 Heng Mui Keng Terrace, 119615, Singapore, Singapore
| |
Collapse
|
10
|
Yan J, Cai J, Zhang B, Wang Y, Wong DF, Siu SWI. Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning. Antibiotics (Basel) 2022; 11:1451. [PMID: 36290108 PMCID: PMC9598685 DOI: 10.3390/antibiotics11101451] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance has become a critical global health problem due to the abuse of conventional antibiotics and the rise of multi-drug-resistant microbes. Antimicrobial peptides (AMPs) are a group of natural peptides that show promise as next-generation antibiotics due to their low toxicity to the host, broad spectrum of biological activity, including antibacterial, antifungal, antiviral, and anti-parasitic activities, and great therapeutic potential, such as anticancer, anti-inflammatory, etc. Most importantly, AMPs kill bacteria by damaging cell membranes using multiple mechanisms of action rather than targeting a single molecule or pathway, making it difficult for bacterial drug resistance to develop. However, experimental approaches used to discover and design new AMPs are very expensive and time-consuming. In recent years, there has been considerable interest in using in silico methods, including traditional machine learning (ML) and deep learning (DL) approaches, to drug discovery. While there are a few papers summarizing computational AMP prediction methods, none of them focused on DL methods. In this review, we aim to survey the latest AMP prediction methods achieved by DL approaches. First, the biology background of AMP is introduced, then various feature encoding methods used to represent the features of peptide sequences are presented. We explain the most popular DL techniques and highlight the recent works based on them to classify AMPs and design novel peptide sequences. Finally, we discuss the limitations and challenges of AMP prediction.
Collapse
Affiliation(s)
- Jielu Yan
- PAMI Research Group, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Jianxiu Cai
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
- Institute of Science and Environment, University of Saint Joseph, Estr. Marginal da Ilha Verde, Macau, China
| | - Bob Zhang
- PAMI Research Group, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Yapeng Wang
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Derek F. Wong
- NLP2CT Lab, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Shirley W. I. Siu
- Institute of Science and Environment, University of Saint Joseph, Estr. Marginal da Ilha Verde, Macau, China
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| |
Collapse
|
11
|
Zou H, Yang F, Yin Z. Integrating multiple sequence features for identifying anticancer peptides. Comput Biol Chem 2022; 99:107711. [DOI: 10.1016/j.compbiolchem.2022.107711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/16/2022] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
|
12
|
Zhu L, Ye C, Hu X, Yang S, Zhu C. ACP-check: An anticancer peptide prediction model based on bidirectional long short-term memory and multi-features fusion strategy. Comput Biol Med 2022; 148:105868. [PMID: 35868046 DOI: 10.1016/j.compbiomed.2022.105868] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022]
Abstract
The anticancer peptide is an emerging anticancer drug that has become an effective alternative to chemotherapy and targeted therapy due to fewer side effects and resistance. The traditional biological experimental method for identifying anticancer peptides is a time-consuming and complicated process that hinders large-scale, rapid, and effective identification. In this paper, we propose a model based on a bidirectional long short-term memory network and multi-features fusion, called ACP-check, which employs a bidirectional long short-term memory network to extract time-dependent information features from peptide sequences, and combines them with amino acid sequence features including binary profile feature, dipeptide composition, the composition of k-spaced amino acid group pairs, amino acid composition, and sequence-order-coupling number. To verify the performance of the model, six benchmark datasets are selected, including ACPred-Fuse, ACPred-FL, ACP240, ACP740, main and alternate datasets of AntiCP2.0. In terms of Matthews correlation coefficients, ACP-check obtains 0.37, 0.82, 0.80, 0.75, 0.56, and 0.86 on six datasets respectively, which is an improvement by 2%-86% than existing state-of-the-art anticancer peptides prediction methods. Furthermore, ACP-check achieves prediction accuracy with 0.91, 0.91, 0.90, 0.87, 0.78, and 0.93 respectively, which increases range from 1%-49%. Overall, the comparison experiment shows that ACP-check can accurately identify anticancer peptides by sequence-level information. The code and data are available at http://www.cczubio.top/ACP-check/.
Collapse
Affiliation(s)
- Lun Zhu
- School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou, 213164, China
| | - Chenyang Ye
- School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou, 213164, China
| | - Xuemei Hu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Sen Yang
- School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou, 213164, China; Changzhou No.2 People's Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, China.
| | - Chenyang Zhu
- School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
13
|
Breast and Lung Anticancer Peptides Classification Using N-Grams and Ensemble Learning Techniques. BIG DATA AND COGNITIVE COMPUTING 2022. [DOI: 10.3390/bdcc6020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Anticancer peptides (ACPs) are short protein sequences; they perform functions like some hormones and enzymes inside the body. The role of any protein or peptide is related to its structure and the sequence of amino acids that make up it. There are 20 types of amino acids in humans, and each of them has a particular characteristic according to its chemical structure. Current machine and deep learning models have been used to classify ACPs problems. However, these models have neglected Amino Acid Repeats (AARs) that play an essential role in the function and structure of peptides. Therefore, in this paper, ACPs offer a promising route for novel anticancer peptides by extracting AARs based on N-Grams and k-mers using two peptides’ datasets. These datasets pointed to breast and lung cancer cells assembled and curated manually from the Cancer Peptide and Protein Database (CancerPPD). Every dataset consists of a sequence of peptides and their synthesis and anticancer activity on breast and lung cancer cell lines. Five different feature selection methods were used in this paper to improve classification performance and reduce the experimental costs. After that, ACPs were classified using four classifiers, namely AdaBoost, Random Forest Tree (RFT), Multi-class Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). These classifiers were evaluated by applying five well-known evaluation metrics. Experimental results showed that the breast and lung ACPs classification process provided an accurate performance that reached 89.25% and 92.56%, respectively. In terms of AUC, it reached 95.35% and 96.92% for both breast and lung ACPs, respectively. The proposed classifiers performed competently somewhat equally in AUC, accuracy, precision, F-measures, and recall, except for Multi-class SVM-based feature selection, which showed superior performance. As a result, this paper significantly improved the predictive performance that can effectively distinguish ACPs as virtual inactive, experimental inactive, moderately active, and very active.
Collapse
|
14
|
PRIP: A Protein-RNA Interface Predictor Based on Semantics of Sequences. Life (Basel) 2022; 12:life12020307. [PMID: 35207594 PMCID: PMC8879494 DOI: 10.3390/life12020307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 01/08/2023] Open
Abstract
RNA–protein interactions play an indispensable role in many biological processes. Growing evidence has indicated that aberration of the RNA–protein interaction is associated with many serious human diseases. The precise and quick detection of RNA–protein interactions is crucial to finding new functions and to uncovering the mechanism of interactions. Although many methods have been presented to recognize RNA-binding sites, there is much room left for the improvement of predictive accuracy. We present a sequence semantics-based method (called PRIP) for predicting RNA-binding interfaces. The PRIP extracted semantic embedding by pre-training the Word2vec with the corpus. Extreme gradient boosting was employed to train a classifier. The PRIP obtained a SN of 0.73 over the five-fold cross validation and a SN of 0.67 over the independent test, outperforming the state-of-the-art methods. Compared with other methods, this PRIP learned the hidden relations between words in the context. The analysis of the semantics relationship implied that the semantics of some words were specific to RNA-binding interfaces. This method is helpful to explore the mechanism of RNA–protein interactions from a semantics point of view.
Collapse
|