1
|
Wang YC, Chang YW, Gong WR, Hu J, Du YZ. The development of abamectin resistance in Liriomyza trifolii and its contribution to thermotolerance. PEST MANAGEMENT SCIENCE 2024; 80:2053-2060. [PMID: 38131224 DOI: 10.1002/ps.7944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Liriomyza trifolii is an economically significant, invasive pest of horticultural and vegetable crops. The larvae form tunnels in foliage and hasten senescence and death. Outbreaks of L. trifolii often erupt in hot weather and are driven by thermotolerance; furthermore, the poor effectiveness of pesticides has made outbreaks more severe. But it is still unclear whether the development of insecticide tolerance will contribute to thermotolerance in L. trifolii. RESULTS To explore potential synergistic relationships between insecticide exposure and thermotolerance in L. trifolii, we first generated an abamectin-resistant (AB-R) strain. Knockdown behavior, eclosion and survival rates, and expression levels of genes encoding heat shock proteins (Hsps) in L. trifolii were then examined in AB-R and abamectin-susceptible (AB-S) strains. Our results demonstrated that long-term selection pressure for abamectin resistance made L. trifolii more prone to develop cross-resistance to other insecticides containing similar ingredients. Furthermore, the AB-R strain exhibited enhanced thermotolerance and possessed an elevated critical thermal maximum temperature, and upregulated expression levels of Hsps during heat stress. CONCLUSION Collectively, our results indicate that thermal adaptation in L. trifolii was accompanied by emerging abamectin resistance. This study provides a theoretical basis for investigating the synergistic or cross-adaptive mechanisms that insects use to cope with adversity and demonstrates the complexity of insect adaptation to environmental and chemical stress. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Ya-Wen Chang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Wei-Rong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, China
| | - Jie Hu
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, China
| | - Yu-Zhou Du
- College of Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Lin XL, Guo F, Rillig MC, Chen C, Duan GL, Zhu YG. Effects of common artificial sweeteners at environmentally relevant concentrations on soil springtails and their gut microbiota. ENVIRONMENT INTERNATIONAL 2024; 185:108496. [PMID: 38359549 DOI: 10.1016/j.envint.2024.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Artificial sweeteners (AS) are extensively utilized as sugar substitutes and have been recognized as emerging environmental contaminants. While the effect of AS on aquatic organisms has garnered recent attention, their effects on soil invertebrates and gut microbial communities remain unclear. To address this knowledge gap, we exposed springtails (Folsomia candida) to both single and combined treatments of four typical AS (sucralose [SUC], saccharin [SAC], cyclamate [CYC], and acesulfame [ACE]) at environmentally relevant concentrations of 0.01, 0.1 and 1 mg kg-1 in soil. Following the first-generational exposure, the reproduction of juveniles showed a significant increase under all the AS treatments of 0.1 mg kg-1. The transcriptomic analysis revealed significant enrichment of several Kyoto Encyclopedia of Gene and Genome pathways (e.g., glycolysis/gluconeogenesis, pentose and glucuronate interconversions, amino sugar, and nucleotide sugar metabolism, ribosome, and lysosome) in springtails under all AS treatments. Analysis of gut bacterial microbiota indicated that three AS (SUC, CYC, and ACE) significantly decreased alpha diversity, and all AS treatments increased the abundance of the genus Achromobacter. After the sixth-generational exposure to CYC, weight increased, but reproduction was inhibited. The pathways that changed significantly (e.g., extracellular matrix-receptor interaction, amino sugar and nucleotide sugar metabolism, lysosome) were generally similar to those altered in first-generational exposure, but with opposite regulation directions. Furthermore, the effect on the alpha diversity of gut microbiota was contrary to that after first-generational exposure, and more noticeable disturbances in microbiota composition were observed. These findings underscore the ecological risk of AS in soils and improve our understanding of the toxicity effects of AS on living organisms.
Collapse
Affiliation(s)
- Xiang-Long Lin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Matthias C Rillig
- Institut Für Biologie, Freie Universität Berlin, Berlin 14195, Germany
| | - Chun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
3
|
Bueno EM, McIlhenny CL, Chen YH. Cross-protection interactions in insect pests: Implications for pest management in a changing climate. PEST MANAGEMENT SCIENCE 2023; 79:9-20. [PMID: 36127854 PMCID: PMC10092685 DOI: 10.1002/ps.7191] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 05/20/2023]
Abstract
Agricultural insect pests display an exceptional ability to adapt quickly to natural and anthropogenic stressors. Emerging evidence suggests that frequent and varied sources of stress play an important role in driving protective physiological responses; therefore, intensively managed agroecosystems combined with climatic shifts might be an ideal crucible for stress adaptation. Cross-protection, where responses to one stressor offers protection against another type of stressor, has been well documented in many insect species, yet the molecular and epigenetic underpinnings that drive overlapping protective responses in insect pests remain unclear. In this perspective, we discuss cross-protection mechanisms and provide an argument for its potential role in increasing tolerance to a wide range of natural and anthropogenic stressors in agricultural insect pests. By drawing from existing literature on single and multiple stressor studies, we outline the processes that facilitate cross-protective interactions, including epigenetic modifications, which are understudied in insect stress responses. Finally, we discuss the implications of cross-protection for insect pest management, focusing on the consequences of cross-protection between insecticides and elevated temperatures associated with climate change. Given the multiple ways that insect pests are intensively managed in agroecosystems, we suggest that examining the role of multiple stressors can be important in understanding the wide adaptability of agricultural insect pests. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Erika M. Bueno
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
| | - Casey L. McIlhenny
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
| | - Yolanda H. Chen
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
- Gund Institute for EnvironmentUniversity of VermontBurlingtonVTUSA
| |
Collapse
|