1
|
Wang K, Wen S, Shang L, Li Y, Li Z, Chen W, Li Y, Jian H, Lyu D. Rapid Identification of High-Temperature Responsive Genes Using Large-Scale Yeast Functional Screening System in Potato. PLANTS (BASEL, SWITZERLAND) 2023; 12:3712. [PMID: 37960068 PMCID: PMC10650283 DOI: 10.3390/plants12213712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
As the third largest global food crop, potato plays an important role in ensuring food security. However, it is particularly sensitive to high temperatures, which seriously inhibits its growth and development, thereby reducing yield and quality and severely limiting its planting area. Therefore, rapid, and high-throughput screening for high-temperature response genes is highly significant for analyzing potato high-temperature tolerance molecular mechanisms and cultivating new high-temperature-tolerant potato varieties. We screened genes that respond to high temperature by constructing a potato cDNA yeast library. After high-temperature treatment at 39 °C, the yeast library was subjected to high-throughput sequencing, and a total of 1931 heat resistance candidate genes were screened. Through GO and KEGG analysis, we found they were mainly enriched in "photosynthesis" and "response to stimuli" pathways. Subsequently, 12 randomly selected genes were validated under high temperature, drought, and salt stress using qRT-PCR. All genes were responsive to high temperature, and most were also induced by drought and salt stress. Among them, five genes ectopically expressed in yeast enhance yeast's tolerance to high temperatures. We provide numerous candidate genes for potato response to high temperature stress, laying the foundation for subsequent analysis of the molecular mechanism of potato response to high temperature.
Collapse
Affiliation(s)
- Ke Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Shiqi Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lina Shang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Ziyan Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Weixi Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yong Li
- Agriculture College, Anshun University, Anshun 561000, China
| | - Hongju Jian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| | - Dianqiu Lyu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| |
Collapse
|
2
|
Jiang J, Wang Z, Chen Z, Wu Y, Mu M, Nie W, Zhao S, Cui G, Yin X. Identification and Evolutionary Analysis of the Auxin Response Factor (ARF) Family Based on Transcriptome Data from Caucasian Clover and Analysis of Expression Responses to Hormones. Int J Mol Sci 2023; 24:15357. [PMID: 37895037 PMCID: PMC10607010 DOI: 10.3390/ijms242015357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Caucasian clover (Trifolium ambiguum M. Bieb.) is an excellent perennial plant in the legume family Fabaceae, with a well-developed rhizome and strong clonal growth. Auxin is one of the most important phytohormones in plants and plays an important role in plant growth and development. Auxin response factor (ARF) can regulate the expression of auxin-responsive genes, thus participating in multiple pathways of auxin transduction signaling in a synergistic manner. No genomic database has been established for Caucasian clover. In this study, 71 TaARF genes were identified through a transcriptomic database of Caucasian clover rhizome development. Phylogenetic analysis grouped the TaARFs into six (1-6) clades. Thirty TaARFs contained a complete ARF structure, including three relatively conserved regions. Physical and chemical property analysis revealed that TaARFs are unstable and hydrophilic proteins. We also analyzed the expression pattern of TaARFs in different tissues (taproot, horizontal rhizome, swelling of taproot, rhizome bud and rhizome bud tip). Quantitative real-time RT-PCR revealed that all TaARFs were responsive to phytohormones (indole-3-acetic acid, gibberellic acid, abscisic acid and methyl jasmonate) in roots, stems and leaves. These results helped elucidate the role of ARFs in responses to different hormone treatments in Caucasian clover.
Collapse
Affiliation(s)
- Jingwen Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zicheng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zirui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yuchen Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Meiqi Mu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wanting Nie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Siwen Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Genome-Wide Identification of Auxin Response Factors in Peanut ( Arachis hypogaea L.) and Functional Analysis in Root Morphology. Int J Mol Sci 2022; 23:ijms23105309. [PMID: 35628135 PMCID: PMC9141974 DOI: 10.3390/ijms23105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022] Open
Abstract
Auxin response factors (ARFs) play important roles in plant growth and development; however, research in peanut (Arachis hypogaea L.) is still lacking. Here, 63, 30, and 30 AhARF genes were identified from an allotetraploid peanut cultivar and two diploid ancestors (A. duranensis and A. ipaensis). Phylogenetic tree and gene structure analysis showed that most AhARFs were highly similar to those in the ancestors. By scanning the whole-genome for ARF-recognized cis-elements, we obtained a potential target gene pool of AhARFs, and the further cluster analysis and comparative analysis showed that numerous members were closely related to root development. Furthermore, we comprehensively analyzed the relationship between the root morphology and the expression levels of AhARFs in 11 peanut varieties. The results showed that the expression levels of AhARF14/26/45 were positively correlated with root length, root surface area, and root tip number, suggesting an important regulatory role of these genes in root architecture and potential application values in peanut breeding.
Collapse
|