1
|
Long Y, Zeng J, Liu X, Wang Z, Tong Q, Zhou R, Liu X. Transcriptomic and metabolomic profiling reveals molecular regulatory network involved in flower development and phenotypic changes in two Lonicera macranthoides varieties. 3 Biotech 2024; 14:174. [PMID: 38855147 PMCID: PMC11153451 DOI: 10.1007/s13205-024-04019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024] Open
Abstract
Due to the medicinal importance of the flowers of Xianglei type (XL) Lonicera macranthoides, it is important to understand the molecular mechanisms that underlie their development. In this study, we elucidated the transcriptomic and metabolomic mechanisms that underlie the flower development mechanism of two L. macranthoides varieties. In this study, 3435 common differentially expressed unigenes (DEGs) and 1138 metabolites were identified. These common DEGs were mainly enriched in plant hormone signal transduction pathways. Metabolomic analysis showed that amino acids were the main metabolites of differential accumulation in wild-type (WT) L. macranthoides, whereas in XL, they were flavonoids and phenylalanine metabolites. Genes and transcription factors (TFs), such as MYB340, histone deacetylase 1 (HDT1), small auxin-up RNA 32 (SAUR32), auxin response factor 6 (ARF6), PIN-LIKES 7 (PILS7), and WRKY6, likely drive metabolite accumulation. Plant hormone signals, especially auxin signals, and various TFs induce downstream flower organ recognition genes, resulting in a differentiation of the two L. macranthoides varieties in terms of their developmental trajectories. In addition, photoperiodic, autonomous, and plant hormone pathways jointly regulated the L. macranthoides corolla opening. SAUR32, Arabidopsis response regulator 9 (ARR9), Gibberellin receptor (GID1B), and Constans-like 10 (COL10) were closely related to the unfolding of the L. macranthoides corolla. These findings offer valuable understanding of the flower growth process of L. macranthoides and the excellent XL phenotypes at the molecular level. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04019-1.
Collapse
Affiliation(s)
- YuQing Long
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
| | - Juan Zeng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
| | - XiaoRong Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
| | - ZhiHui Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
| | - QiaoZhen Tong
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208 Hunan Province China
| | - RiBao Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208 Hunan Province China
| | - XiangDan Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208 Hunan Province China
| |
Collapse
|
2
|
Xin H, Zhang L, Wang H, Zhu X. Dynamic transcriptome analysis provides molecular insights into underground floral differentiation in Adonis Amurensis Regel & Radde. BMC Genom Data 2024; 25:33. [PMID: 38515034 PMCID: PMC10956236 DOI: 10.1186/s12863-024-01220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Understanding flower developmental processes is a prerequisite for improving flowering 'plants' production. Adonis amurensis is a fascinating spring ephemeral plant that develops its flower organs underground. Nevertheless, knowledge of the molecular mechanisms driving this particular process is scarce. Herein, we examined transcriptional changes during underground flower differentiation in A. amurensis and unveiled key differently regulated genes and pathways. High-throughput RNA sequencing of meristems at different flower developmental stages, including flower primordium (FP), sepal stage (SE), perianth primordium (PE), stamen stage (ST), and pistil stage (PI), identified 303,234 unigenes that showed 44.79% similarity with sequences in Aquilegia coerulea. Correlations, principal component, and differentially expressed genes (DEGs) analyses revealed that few molecular changes occurred during the transition from PE to ST. Many DEGs exhibited stage-specific regulations. Transcription factor (TF) and phytohormone family genes are critical regulators of the floral differentiation process in A. amurensis. The most differentially regulated TFs were MADS, FAR1, MYBs, AP2/ERF, B3, C2H2, and LOBs. We filtered out 186 candidate genes for future functional studies, including 18 flowering/circadian-related, 32 phytohormone-related, and TF family genes. Our findings deepen our understanding of the underground flower differentiation process and offer critical resources to dissect its regulatory network in A. amurensis. These findings establish a foundational platform for researchers dedicated to exploring the unique phenotypic characteristics of this specific flowering modality and delving into the intricate molecular mechanisms underpinning its regulation and expression.
Collapse
Affiliation(s)
- Hui Xin
- School of Landscape Architecture, Changchun University, 6543 Weixing Road, Changchun, China
| | - Lifan Zhang
- College of Life Sciences, Tonghua Normal University, 950, Yucai Road, Tonghua, China
| | - Hongtao Wang
- College of Life Sciences, Tonghua Normal University, 950, Yucai Road, Tonghua, China
| | - Xingzun Zhu
- School of Landscape Architecture, Changchun University, 6543 Weixing Road, Changchun, China.
| |
Collapse
|
3
|
Zhang L, Fu J, Dong T, Zhang M, Wu J, Liu C. Promoter cloning and activities analysis of JmLFY, a key gene for flowering in Juglans mandshurica. FRONTIERS IN PLANT SCIENCE 2023; 14:1243030. [PMID: 37900747 PMCID: PMC10602732 DOI: 10.3389/fpls.2023.1243030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
Juglans mandshurica (Manchurian walnut) is a precious timber and woody grain and oil species in Northeast China. The heterodichogamous characteristic phenomenon resulted in the non-synchronous flowering and development of male and female flowers, which limited the mating and the yield and quality of fruits. LFY is a core gene in the flowering regulatory networks, which has been cloned in J. mandshurica, and the function has also been verified preliminarily. In this study, the JmLFY promoter sequence with different lengths of 5'-deletion (pLFY1-pLFY6) were cloned and conducted bioinformatics analysis, the promoter activities were analyzed by detecting their driving activity to GUS gene in the tobacco plants that transformed with different promoter sequence stably or transiently. After that, the interaction between JmSOC1 and JmLFY gene promoter was also analyzed via yeast single-hybrid. The results showed that the promoter sequence contains core cis-acting elements essential for eukaryotic promoters, hormone response elements, defense- and stress-responsive elements, flowering-related elements, etc. Transgenic tobacco plants with pLFY1 were obtained by Agrobacterium infection using the pCAMBIA1301 expression vector, and the GUS gene driven by the JmLFY promoter was detected to express in the leaf, stem, flower, and root of the transformed tobacco plant, which indicated that the obtained JmLFY promoter had driving activity. GUS histochemical staining and enzyme activity detection showed that promoter fragments with different lengths had promoter activity and could respond to the induction of long photoperiod, low temperature, salicylic acid (SA), IAA, GA3, and methyl jasmonate (MeJA). The core regulatory region of JmLFY gene promoter in J. mandshurica was between -657 bp and -1,904 bp. Point-to-point validation of yeast single-hybrid confirmed the interaction between JmSOC1 and JmLFY gene promoter, which indicated that JmLFY gene is the downstream target of JmSOC1. These results reveal relevant factors affecting JmLFY gene expression and clarify the molecular mechanism of JmLFY gene regulation in the flower developmental partially, which will provide a theoretical basis for regulating the flowering time by regulating JmLFY gene expression in J. mandshurica.
Collapse
Affiliation(s)
- Lijie Zhang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jingqi Fu
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Tianyi Dong
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Mengmeng Zhang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jingwen Wu
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunping Liu
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Silviculture of Liaoning Province , Shenyang, China
| |
Collapse
|
4
|
Luo H, Zhang H, Wang H. Advance in sex differentiation in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 14:1186904. [PMID: 37265638 PMCID: PMC10231686 DOI: 10.3389/fpls.2023.1186904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Cucumber belongs to the family Cucurbitaceae (melon genus) and is an annual herbaceous vegetable crop. Cucumber is an important cash crop that is grown all over the world. From morphology to cytology, from canonical genetics to molecular biology, researchers have performed much research on sex differentiation and its regulatory mechanism in cucumber, mainly in terms of cucumber sex determination genes, environmental conditions, and the effects of plant hormones, revealing its genetic basis to improve the number of female flowers in cucumber, thus greatly improving the yield of cucumber. This paper reviews the research progress of sex differentiation in cucumber in recent years, mainly focusing on sex-determining genes, environmental conditions, and the influence of phytohormones in cucumber, and provides a theoretical basis and technical support for the realization of high and stable yield cultivation and molecular breeding of cucumber crop traits.
Collapse
Affiliation(s)
- Haiyan Luo
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Hangzhou Lin’an District Agricultural and Rural Bureau, Hangzhou, China
| | - Huanchun Zhang
- Yantai Institute of Agricultural Sciences, Yantai, China
| | - Huasen Wang
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Wang L, Du M, Wang B, Duan H, Zhang B, Wang D, Li Y, Wang J. Transcriptome analysis of halophyte Nitraria tangutorum reveals multiple mechanisms to enhance salt resistance. Sci Rep 2022; 12:14031. [PMID: 35982183 PMCID: PMC9388663 DOI: 10.1038/s41598-022-17839-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/01/2022] [Indexed: 12/05/2022] Open
Abstract
As a typical halophyte, Nitraria tangutorum Bobr. has attracted the interest of many researchers with the excellent salt tolerance. Elucidation of the mechanism of N. tangutorum salinity tolerance will facilitate the genetic improvement of productive plants faced with salinity. To reveal the molecular response to gradually accumulated salt stress in N. tangutorum, RNA-sequencing and analysis of gradually accumulated NaCl treated samples and control samples were performed, and a total of 1419 differentially expressed genes were identified, including 949 down-regulated genes and 470 up-regulated genes. Detailed analysis uncovered that the catabolism of organic compounds mainly based on oxidative phosphorylation genes was up-regulated. Additionally, various antioxidant genes, especially anthocyanin-related genes, were found to help N. tangutorum remove reactive oxygen species. Moreover, the Mitogen activated protein kinase signaling pathway and other signaling pathways co-regulated various salt tolerance activities. Additionally, intracellular ion homeostasis was maintained via regulation of osmotic regulator-related genes, cutin-related genes, and cell elongation-related genes to retain cellular water and reduce ion concentration. In particularly, simultaneous up-regulation in cytoskeleton-related genes, cell wall-related genes, and auxin-related genes, provided evidence of important role of cell expansion in plant salt tolerance. In conclusion, complex regulatory mechanisms modulated by multiple genes might contribute to the salt tolerance by N. tangutorum.
Collapse
Affiliation(s)
- Lirong Wang
- Qinghai Provincial Key Laboratory of High-Value Utilization of Characteristic Economic Plants, Qinghai Minzu University, Xining, 810007, China.,Institute of Ecology and Environment of Qinghai-Tibet Plateau, Qinghai Minzu University, Xining, 810007, China
| | - Meng Du
- Qinghai Provincial Key Laboratory of High-Value Utilization of Characteristic Economic Plants, Qinghai Minzu University, Xining, 810007, China
| | - Bo Wang
- College of Forestry, Gansu Agricultural University, Lanzhou, 730000, China
| | - Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Benyin Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Dong Wang
- Lanzhou Agriculture and Rural Affairs Bureau in Gansu Province, Lanzhou, 730030, China
| | - Yi Li
- College of Forestry, Gansu Agricultural University, Lanzhou, 730000, China.
| | - Jiuli Wang
- Qinghai Provincial Key Laboratory of High-Value Utilization of Characteristic Economic Plants, Qinghai Minzu University, Xining, 810007, China. .,Institute of Ecology and Environment of Qinghai-Tibet Plateau, Qinghai Minzu University, Xining, 810007, China.
| |
Collapse
|