1
|
Han K, Lai M, Zhao T, Yang X, An X, Chen Z. Plant YABBY transcription factors: a review of gene expression, biological functions, and prospects. Crit Rev Biotechnol 2024:1-22. [PMID: 38830825 DOI: 10.1080/07388551.2024.2344576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/08/2023] [Indexed: 06/05/2024]
Abstract
Transcription factors often contain several different functional regions, including DNA-binding domains, and play an important regulatory role in plant growth, development, and the response to external stimuli. YABYY transcription factors are plant-specific and contain two special domains (N-terminal C2C2 zinc-finger and C-terminal helix-loop-helix domains) that are indispensable. Specifically, YABBY transcription factors play key roles in maintaining the polarity of the adaxial-abaxial axis of leaves, as well as in regulating: vegetative and reproductive growth, hormone response, stress resistance, and secondary metabolite synthesis in plants. Recently, the identification and functional verification of YABBY transcription factors in different plants has increased. On this basis, we summarize recent advances in the: identification, classification, expression patterns, and functions of the YABBY transcription factor family. The normal expression and function of YABBY transcription factors rely on a regulatory network that is established through the interaction of YABBY family members with other genes. We discuss the interaction network of YABBY transcription factors during leaf polarity establishment and floral organ development. This article provides a reference for research on YABBY function, plant genetic improvement, and molecular breeding.
Collapse
Affiliation(s)
- Kaiyuan Han
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| | - Meng Lai
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Tianyun Zhao
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| | - Xiong Yang
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| | - Xinmin An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Zhong Chen
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Kong L, Sun J, Jiang Z, Ren W, Wang Z, Zhang M, Liu X, Wang L, Ma W, Xu J. Identification and expression analysis of YABBY family genes in Platycodon grandiflorus. PLANT SIGNALING & BEHAVIOR 2023; 18:2163069. [PMID: 36681901 PMCID: PMC9870009 DOI: 10.1080/15592324.2022.2163069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Platycodon grandiflorus set ornamental, edible, and medicinal plant with broad prospects for further application development. However, there are no reports on the YABBY transcription factor in P. grandiflorus. Identification and analysis of the YABBY gene family of P. grandiflorus using bioinformatics means. Six YABBY genes were identified and divided into five subgroups. Transcriptome data and qRT-PCR were used to analyze the expression patterns of YABBY. YABBY genes exhibited organ-specific patterns in expression in P grandiflorus. Upon salt stress and drought induction, P. grandiflorus presented different morphological and physiological changes with some dynamic changes. Under salt treatment, the YABBY gene family was down-regulated; PgYABBY5 was up-regulated in leaves at 24 h. In drought treatment, PgYABBY1, PgYABBY2, and PgYABBY3 were down-regulated to varying degrees, but PgYABBY3 was significantly up-regulated in the roots. PgYABBY5 was up-regulated gradually after being down-regulated. PgYABBY5 was significantly up-regulated in stem and leaf at 48 h. PgYABBY6 was down-regulated at first and then significantly up-regulated. The dynamic changes of salt stress and drought stress can be regarded as the responses of plants to resist damage. During the whole process of salt and drought stress treatment, the protein content of each tissue part of P grandiflorus changed continuously. At the same time, we found that the promoter region of the PgYABBY gene contains stress-resistant elements, and the regulatory role of YABBY transcription factor in the anti-stress mechanism of P grandiflorus remains to be studied. PgYABBY1, PgYABBY2, and PgYABBY5 may be involved in the regulation of saponins in P. grandiflorus. PgYABBY5 may be involved in the drought resistance mechanism in P. grandiflorus stems and leaves. This study may provide a theoretical basis for studying the regulation of terpenoids by the YABBY transcription factor and its resistance to abiotic stress.
Collapse
Affiliation(s)
- Lingyang Kong
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiaying Sun
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhehui Jiang
- School of Forestry,Northeast Forestry University, HarbinChina
| | - Weichao Ren
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiqi Zhang
- School of Forestry,Northeast Forestry University, HarbinChina
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Traditional Chinese Medicine (TCM), Jiamusi, China
| | - Lijuan Wang
- Ophthalmology Hospital in Heilongjiang province, Harbin, China
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
- School of Forestry,Northeast Forestry University, HarbinChina
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Jiao Xu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
- College of Jiamusi, Heilongjiang University of Traditional Chinese Medicine (TCM), Jiamusi, China
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
3
|
Huang J, Chen GZ, Ahmad S, Wang Q, Tu S, Shi XL, Hao Y, Zhou YZ, Lan SR, Liu ZJ, Peng DH. Identification, Molecular Characteristics, and Evolution of YABBY Gene Family in Melastoma dodecandrum. Int J Mol Sci 2023; 24:ijms24044174. [PMID: 36835586 PMCID: PMC9962812 DOI: 10.3390/ijms24044174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The YABBY gene family plays an important role in plant growth and development, such as response to abiotic stress and lateral organ development. YABBY TFs are well studied in numerous plant species, but no study has performed a genome-wide investigation of the YABBY gene family in Melastoma dodecandrum. Therefore, a genome-wide comparative analysis of the YABBY gene family was performed to study their sequence structures, cis-acting elements, phylogenetics, expression, chromosome locations, collinearity analysis, protein interaction, and subcellular localization analysis. A total of nine YABBY genes were found, and they were further divided into four subgroups based on the phylogenetic tree. The genes in the same clade of phylogenetic tree had the same structure. The cis-element analysis showed that MdYABBY genes were involved in various biological processes, such as cell cycle regulation, meristem expression, responses to low temperature, and hormone signaling. MdYABBYs were unevenly distributed on chromosomes. The transcriptomic data and real-time reverse transcription quantitative PCR (RT-qPCR) expression pattern analyses showed that MdYABBY genes were involved in organ development and differentiation of M. dodecandrum, and some MdYABBYs in the subfamily may have function differentiation. The RT-qPCR analysis showed high expression of flower bud and medium flower. Moreover, all MdYABBYs were localized in the nucleus. Therefore, this study provides a theoretical basis for the functional analysis of YABBY genes in M. dodecandrum.
Collapse
|
4
|
Zhang X, Ding L, Song A, Li S, Liu J, Zhao W, Jia D, Guan Y, Zhao K, Chen S, Jiang J, Chen F. DWARF AND ROBUST PLANT regulates plant height via modulating gibberellin biosynthesis in chrysanthemum. PLANT PHYSIOLOGY 2022; 190:2484-2500. [PMID: 36214637 PMCID: PMC9706434 DOI: 10.1093/plphys/kiac437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 05/09/2023]
Abstract
YABBY (YAB) genes are specifically expressed in abaxial cells of lateral organs and determine abaxial cell fate. However, most studies have focused on few model plants, and the molecular mechanisms of YAB genes are not well understood. Here, we identified a YAB transcription factor in chrysanthemum (Chrysanthemum morifolium), Dwarf and Robust Plant (CmDRP), that belongs to a distinct FILAMENTOUS FLOWER (FlL)/YAB3 sub-clade lost in Brassicaceae. CmDRP was expressed in various tissues but did not show any polar distribution in chrysanthemum. Overexpression of CmDRP resulted in a semi-dwarf phenotype with a significantly decreased active GA3 content, while reduced expression generated the opposite phenotype. Furthermore, plant height of transgenic plants was partially rescued through the exogenous application of GA3 and Paclobutrazol, and expression of the GA biosynthesis gene CmGA3ox1 was significantly altered in transgenic plants. Yeast one-hybrid, luciferase, and chromatin immunoprecipitation-qPCR analyses showed that CmDRP could directly bind to the CmGA3ox1 promoter and suppress its expression. Our research reveals a nonpolar expression pattern of a YAB family gene in dicots and demonstrates it regulates plant height through the GA pathway, which will deepen the understanding of the genetic and molecular mechanisms of YAB genes.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayou Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Diwen Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunxiao Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Wang QQ, Li YY, Chen J, Zhu MJ, Liu X, Zhou Z, Zhang D, Liu ZJ, Lan S. Genome-wide identification of YABBY genes in three Cymbidium species and expression patterns in C. ensifolium (Orchidaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:995734. [PMID: 36507452 PMCID: PMC9729879 DOI: 10.3389/fpls.2022.995734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Members of the YABBY gene family play significant roles in lamina development in cotyledons, floral organs, and other lateral organs. The Orchidaceae family is one of the largest angiosperm groups. Some YABBYs have been reported in Orchidaceae. However, the function of YABBY genes in Cymbidium is currently unknown. In this study, 24 YABBY genes were identified in Cymbidium ensifolium, C. goeringii, and C. sinense. We analyzed the conserved domains and motifs, the phylogenetic relationships, chromosome distribution, collinear correlation, and cis-elements of these three species. We also analyzed expression patterns of C. ensifolium and C. goeringii. Phylogenetic relationships analysis indicated that 24 YABBY genes were clustered in four groups, INO, CRC/DL, YAB2, and YAB3/FIL. For most YABBY genes, the zinc finger domain was located near the N-terminus and the helix-loop-helix domain (YABBY domain) near the C-terminus. Chromosomal location analysis results suggested that only C. goeringii YABBY has tandem repeat genes. Almost all the YABBY genes displayed corresponding one-to-one relationships in the syntenic relationships analysis. Cis-elements analysis indicated that most elements were clustered in light-responsive elements, followed by MeJA-responsive elements. Expression patterns showed that YAB2 genes have high expression in floral organs. RT-qPCR analysis showed high expression of CeYAB3 in lip, petal, and in the gynostemium. CeCRC and CeYAB2.2 were highly expressed in gynostemium. These findings provide valuable information of YABBY genes in Cymbidium species and the function in Orchidaceae.
Collapse
Affiliation(s)
- Qian-Qian Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiating Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meng-Jia Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuedie Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhuang Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Genome-Wide Characterization and Identification of the YABBY Gene Family in Mango (Mangifera indica). DIVERSITY 2022. [DOI: 10.3390/d14100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
YABBY is a specific transcription factor gene family in plants. It has the typical N-terminal C2C2-type zinc-finger domain and the C-terminal YABBY conservative structure domain, which play an important role in the development of the leaves and floral organs. The YABBY gene family directs leaf polarity in mango, playing an important role in maintaining species specificity. In this study, a total of seven YABBY genes were identified in the mango (Mangifera indica) genome. The seven YABBY family members possessed both typical C2C2 and YABBY domains. A phylogenetic tree was constructed based on the amino acid sequences of the 42 YABBY proteins of mango, Arabidopsis, apple, grape, and peach. The phylogenetic tree indicated that the members of the mango YABBY family could be divided into three subfamilies, including CRC, YAB5, and YAB3. Quantitative real-time PCR showed that the transcription levels of the MiYABBYs were significantly different under biotic and abiotic stresses. The transcription level of MiYABBY7 was significantly down-regulated at 0–72 h after Xanthomonas campestris pv. mangiferaeindicae infection, methyl jasmonate and salicylic acid stresses. The MiYABBY1 transcription level was significantly down-regulated at 0–72 h after Colletotrichum gloeosporioides infection. MiYABBYs were expressed specifically in different leaves and fruit, and MiYABBY6 was significantly up-regulated during leaf and fruit development. However, MiYABBY5 showed a contrary transcriptional pattern during leaf and fruit development. This is first report on the mango YABBY gene family at the genome-wide level. These results will be beneficial for understanding the biological functions and molecular mechanisms of YABBY genes.
Collapse
|