1
|
Bhad PG, Mondal S, Badigannavar AM. Molecular tagging of seed size using MITE markers in an induced large seed mutant with higher cotyledon cell size in groundnut. 3 Biotech 2024; 14:56. [PMID: 38298555 PMCID: PMC10825088 DOI: 10.1007/s13205-023-03909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
A large seed mutant, TG 89 having a 76.7% increment in hundred kernel weight in comparison to its parent TG 26, was isolated from an electron beam-induced mutagenized population. Studies based on environmental scanning electron microscopy of both parent and mutant revealed that the mutant seed cotyledon had significantly bigger cell size than parent. A mapping population with 122 F2 plants derived from the mutant and a distant normal seed genotype (ICGV 15007) was utilized to map the QTL associated with higher HKW. Bulk segregant analysis revealed putative association of three markers with this mutant large seed trait. Further, genotyping of F2 individuals with polymorphic markers detected 14 linkage groups with a map distance of 1053 cM. QTL analysis revealed a significant additive major QTL for the mutant large seed trait on linkage group A05 explaining 12.7% phenotypic variation for the seed size. This QTL was located between flanking markers AhTE333 and AhTE810 having a map interval of 4.7 cM which corresponds to 90.65 to 107.24 Mbp in A05 chromosome, respectively. Within this genomic fragment, an ortholog of the BIG SEEDS 1 gene was found at 102,476,137 bp. Real-time PCR revealed down-regulation of this BIG SEEDS 1 gene in the mutant indicating a loss of function mutation giving rise to a large seed phenotype. This QTL was validated in 11 advanced breeding lines having large seed size from this mutant but with varied genetic backgrounds. This validation showcased a highly promising selection accuracy of 90.9% for the marker-assisted selection. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03909-0.
Collapse
Affiliation(s)
- Poonam Gajanan Bhad
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094 India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094 India
| | - Anand M. Badigannavar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094 India
| |
Collapse
|
2
|
Yang H, Luo L, Li Y, Li H, Zhang X, Zhang K, Zhu S, Li X, Li Y, Wan Y, Liu F. Fine mapping of qAHPS07 and functional studies of AhRUVBL2 controlling pod size in peanut (Arachis hypogaea L.). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1785-1798. [PMID: 37256840 PMCID: PMC10440995 DOI: 10.1111/pbi.14076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/18/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Cultivated peanut (Arachis hypogaea L.) is an important oil and cash crop. Pod size is one of the major traits determining yield and commodity characteristic of peanut. Fine mapping of quantitative trait locus (QTL) and identification of candidate genes associated with pod size are essential for genetic improvement and molecular breeding of peanut varieties. In this study, a major QTL related to pod size, qAHPS07, was fine mapped to a 36.46 kb interval on chromosome A07 using F2 , recombinant inbred line (RIL) and secondary F2 populations. qAHPS07 explained 38.6%, 23.35%, 37.48%, 25.94% of the phenotypic variation for single pod weight (SPW), pod length (PL), pod width (PW) and pod shell thickness (PST), respectively. Whole genome resequencing and gene expression analysis revealed that a RuvB-like 2 protein coding gene AhRUVBL2 was the most likely candidate for qAHPS07. Overexpression of AhRUVBL2 in Arabidopsis led to larger seeds and plants than the wild type. AhRUVBL2-silenced peanut seedlings represented small leaves and shorter main stems. Three haplotypes were identified according to three SNPs in the promoter of AhRUVBL2 among 119 peanut accessions. Among them, SPW, PW and PST of accessions carrying Hap_ATT represent 17.6%, 11.2% and 26.3% higher than those carrying Hap_GAC,respectively. In addition, a functional marker of AhRUVBL2 was developed. Taken together, our study identified a key functional gene of peanut pod size, which provides new insights into peanut pod size regulation mechanism and offers practicable markers for the genetic improvement of pod size-related traits in peanut breeding.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Lu Luo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Yuying Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Huadong Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Xiurong Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Kun Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Suqing Zhu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Xuanlin Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Yingjie Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Yongshan Wan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Fengzhen Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| |
Collapse
|
3
|
Yang L, Yang L, Ding Y, Chen Y, Liu N, Zhou X, Huang L, Luo H, Xie M, Liao B, Jiang H. Global Transcriptome and Co-Expression Network Analyses Revealed Hub Genes Controlling Seed Size/Weight and/or Oil Content in Peanut. PLANTS (BASEL, SWITZERLAND) 2023; 12:3144. [PMID: 37687391 PMCID: PMC10490140 DOI: 10.3390/plants12173144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Cultivated peanut (Arachis hypogaea L.) is an important economic and oilseed crop worldwide, providing high-quality edible oil and high protein content. Seed size/weight and oil content are two important determinants of yield and quality in peanut breeding. To identify key regulators controlling these two traits, two peanut cultivars with contrasting phenotypes were compared to each other, one having a larger seed size and higher oil content (Zhonghua16, ZH16 for short), while the second cultivar had smaller-sized seeds and lower oil content (Zhonghua6, ZH6). Whole transcriptome analyses were performed on these two cultivars at four stages of seed development. The results showed that ~40% of the expressed genes were stage-specific in each cultivar during seed development, especially at the early stage of development. In addition, we identified a total of 5356 differentially expressed genes (DEGs) between ZH16 and ZH6 across four development stages. Weighted gene co-expression network analysis (WGCNA) based on DEGs revealed multiple hub genes with potential roles in seed size/weight and/or oil content. These hub genes were mainly involved in transcription factors (TFs), phytohormones, the ubiquitin-proteasome pathway, and fatty acid synthesis. Overall, the candidate genes and co-expression networks detected in this study could be a valuable resource for genetic breeding to improve seed yield and quality traits in peanut.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Huifang Jiang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430000, China; (L.Y.); (L.Y.); (Y.D.); (Y.C.); (N.L.); (X.Z.); (L.H.); (H.L.); (M.X.); (B.L.)
| |
Collapse
|
4
|
Lv Z, Zhou D, Shi X, Ren J, Zhang H, Zhong C, Kang S, Zhao X, Yu H, Wang C. The determination of peanut (Arachis hypogaea L.) pod-sizes during the rapid-growth stage by phytohormones. BMC PLANT BIOLOGY 2023; 23:371. [PMID: 37491223 PMCID: PMC10369843 DOI: 10.1186/s12870-023-04382-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Pod size is an important yield target trait for peanut breeding. However, the molecular mechanism underlying the determination of peanut pod size still remains unclear. RESULTS In this study, two peanut varieties with contrasting pod sizes were used for comparison of differences on the transcriptomic and endogenous hormonal levels. Developing peanut pods were sampled at 10, 15, 20, 25 and 30 days after pegging (DAP). Our results showed that the process of peanut pod-expansion could be divided into three stages: the gradual-growth stage, the rapid-growth stage and the slow-growth stage. Cytological analysis confirmed that the faster increase of cell-number during the rapid-growth stage was the main reason for the formation of larger pod size in Lps. Transcriptomic analyses showed that the expression of key genes related to the auxin, the cytokinin (CK) and the gibberellin (GA) were mostly up-regulated during the rapid-growth stage. Meanwhile, the cell division-related differentially expressed genes (DEGs) were mostly up-regulated at 10DAP which was consistent with the cytological-observation. Additionally, the absolute quantification of phytohormones were carried out by liquid-chromatography coupled with the tandem-mass-spectrometry (LC-MS/MS), and results supported the findings from comparative transcriptomic studies. CONCLUSIONS It was speculated that the differential expression levels of TAA1 and ARF (auxin-related), IPT and B-ARR (CK-related), KAO, GA20ox and GA3ox (GA-related), and certain cell division-related genes (gene-LOC112747313 and gene-LOC112754661) were important participating factors of the determination-mechanism of peanut pod sizes. These results were informative for the elucidation of the underlying regulatory network in peanut pod-growth and would facilitate further identification of valuable target genes.
Collapse
Affiliation(s)
- Zhenghao Lv
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Dongying Zhou
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xiaolong Shi
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jingyao Ren
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - He Zhang
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Chao Zhong
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Shuli Kang
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xinhua Zhao
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China.
| | | |
Collapse
|
5
|
Genetic Variation, DIMBOA Accumulation, and Candidate Gene Identification in Maize Multiple Insect-Resistance. Int J Mol Sci 2023; 24:ijms24032138. [PMID: 36768464 PMCID: PMC9916695 DOI: 10.3390/ijms24032138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/25/2023] Open
Abstract
Maize seedlings contain high amounts of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and the effect of DIMBOA is directly associated with multiple insect-resistance against insect pests such as Asian corn borer and corn leaf aphids. Although numerous genetic loci for multiple insect-resistant traits have been identified, little is known about genetic controls regarding DIMBOA content. In this study, the best linear unbiased prediction (BLUP) values of DIMBOA content in two ecological environments across 310 maize inbred lines were calculated; and their phenotypic data and BLUP values were used for marker-trait association analysis. We identified nine SSRs that were significantly associated with DIMBOA content, which explained 4.30-20.04% of the phenotypic variation. Combined with 47 original genetic loci from previous studies, we detected 19 hot loci and approximately 11 hot loci (in Bin 1.04, Bin 2.00-2.01, Bin 2.03-2.04, Bin 4.00-4.03, Bin 5.03, Bin 5.05-5.07, Bin 8.01-8.03, Bin 8.04-8.05, Bin 8.06, Bin 9.01, and Bin 10.04 regions) supported pleiotropy for their association with two or more insect-resistant traits. Within the 19 hot loci, we identified 49 candidate genes, including 12 controlling DIMBOA biosynthesis, 6 involved in sugar metabolism/homeostasis, 2 regulating peroxidases activity, 21 associated with growth and development [(auxin-upregulated RNAs (SAUR) family member and v-myb avian myeloblastosis viral oncogene homolog (MYB)], and 7 involved in several key enzyme activities (lipoxygenase, cysteine protease, restriction endonuclease, and ubiquitin-conjugating enzyme). The synergy and antagonism interactions among these genes formed the complex defense mechanisms induced by multiple insect pests. Moreover, sufficient genetic variation was reported for DIMBOA performance and SSR markers in the 310 tested maize inbred lines, and 3 highly (DIMBOA content was 402.74-528.88 μg g-1 FW) and 15 moderate (DIMBOA content was 312.92-426.56 μg g-1 FW) insect-resistant genotypes were major enriched in the Reid group. These insect-resistant inbred lines can be used as parents in maize breeding programs to develop new varieties.
Collapse
|
6
|
Liu Y, Yi C, Liu Q, Wang C, Wang W, Han F, Hu X. Multi-Omics Profiling Identifies Candidate Genes Controlling Seed Size in Peanut. PLANTS (BASEL, SWITZERLAND) 2022; 11:3276. [PMID: 36501316 PMCID: PMC9740956 DOI: 10.3390/plants11233276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Seed size is the major yield component and a key target trait that is selected during peanut breeding. However, the mechanisms that regulate peanut seed size are unknown. Two peanut mutants with bigger seed size were isolated in this study by 60Co treatment of a common peanut landrace, Huayu 22, and were designated as the "big seed" mutant lines (hybs). The length and weight of the seed in hybs were about 118% and 170% of those in wild-type (WT), respectively. We adopted a multi-omics approach to identify the genomic locus underlying the hybs mutants. We performed whole genome sequencing (WGS) of WT and hybs mutants and identified thousands of large-effect variants (SNPs and indels) that occurred in about four hundred genes in hybs mutants. Seeds from both WT and hybs lines were sampled 20 days after flowering (DAF) and were used for RNA-Seq analysis; the results revealed about one thousand highly differentially expressed genes (DEGs) in hybs compared to WT. Using a method that combined large-effect variants with DEGs, we identified 45 potential candidate genes that shared gene product mutations and expression level changes in hybs compared to WT. Among the genes, two candidate genes encoding cytochrome P450 superfamily protein and NAC transcription factors may be associated with the increased seed size in hybs. The present findings provide new information on the identification and functional research into candidate genes responsible for the seed size phenotype in peanut.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life Sciences, Linyi University, Linyi 276000, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Congyang Yi
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life Sciences, Linyi University, Linyi 276000, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunhui Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenpeng Wang
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Fangpu Han
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life Sciences, Linyi University, Linyi 276000, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojun Hu
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life Sciences, Linyi University, Linyi 276000, China
| |
Collapse
|