1
|
González-Pech RA, Li VY, Garcia V, Boville E, Mammone M, Kitano H, Ritchie KB, Medina M. The Evolution, Assembly, and Dynamics of Marine Holobionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:443-466. [PMID: 37552896 DOI: 10.1146/annurev-marine-022123-104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vivian Y Li
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vanessa Garcia
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Elizabeth Boville
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Marta Mammone
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina, Beaufort, South Carolina, USA;
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| |
Collapse
|
2
|
Establishment and Validation of a New Analysis Strategy for the Study of Plant Endophytic Microorganisms. Int J Mol Sci 2022; 23:ijms232214223. [PMID: 36430699 PMCID: PMC9697482 DOI: 10.3390/ijms232214223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Amplicon sequencing of bacterial or fungal marker sequences is currently the main method for the study of endophytic microorganisms in plants. However, it cannot obtain all types of microorganisms, including bacteria, fungi, protozoa, etc., in samples, nor compare the relative content between endophytic microorganisms and plants and between different types of endophytes. Therefore, it is necessary to develop a better analysis strategy for endophytic microorganism investigation. In this study, a new analysis strategy was developed to obtain endophytic microbiome information from plant transcriptome data. Results showed that the new strategy can obtain the composition of microbial communities and the relative content between plants and endophytic microorganisms, and between different types of endophytic microorganisms from the plant transcriptome data. Compared with the amplicon sequencing method, more endophytic microorganisms and relative content information can be obtained with the new strategy, which can greatly broaden the research scope and save the experimental cost. Furthermore, the advantages and effectiveness of the new strategy were verified with different analysis of the microbial composition, correlation analysis, inoculant content test, and repeatability test.
Collapse
|