1
|
Poliseno A, Quattrini AM, Lau YW, Pirro S, Reimer JD, McFadden CS. New mitochondrial gene order arrangements and evolutionary implications in the class Octocorallia. Mitochondrial DNA A DNA Mapp Seq Anal 2024:1-11. [PMID: 39431478 DOI: 10.1080/24701394.2024.2416173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
The complete mitochondrial genomes of octocorals typically range from 18.5 kb to 20.5 kb in length and include 14 protein-coding genes (PCGs), two ribosomal RNA genes and one tRNA. To date, seven different gene orders (A-G) have been described, yet comprehensive investigations of the actual number of arrangements, as well as comparative analyses and evolutionary reconstructions of mitochondrial genome evolution within the whole class Octocorallia, have been often overlooked. Here, we considered the complete mitochondrial genomes available for octocorals and explored their structure and gene order variability. Our results updated the actual number of mitochondrial gene order arrangements so far known for octocorals from 7 to 14 and allowed us to explore and preliminarily discuss the role of some of the structural and functional factors in the mitogenomes. We performed comparative mitogenomic analyses on the existing and novel octocoral gene orders, considering different mitogenomic structural features such as genome size, GC percentage, AT and GC skewness. The mitochondrial gene order history mapped on a recently published nuclear loci phylogeny showed that the most common rearrangement events in octocorals are inversions, inverted transpositions and transpositions. Furthermore, gene order rearrangement events were restricted only to some regions of the tree. Overall, different rearrangement events arose independently and from the ancestral and most common gene order, instead of being derived from other rearranged orders. Finally, our data demonstrate how the study of mitochondrial gene orders can be used to explore the evolution of octocorals and in some cases can be used to assess the phylogenetic placement of certain taxa.
Collapse
Affiliation(s)
- Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Andrea M Quattrini
- Department of Biology, Harvey Mudd College, Claremont, CA, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Yee Wah Lau
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | - James D Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | |
Collapse
|
2
|
Ewusi EOM, Lee SR, Kim AR, Go Y, Htoo H, Chung S, Amin MHF, Andriyono S, Kim HW, Kundu S. Endemic Radiation of African Moonfish, Selene dorsalis (Gill 1863), in the Eastern Atlantic: Mitogenomic Characterization and Phylogenetic Implications of Carangids (Teleostei: Carangiformes). Biomolecules 2024; 14:1208. [PMID: 39456141 PMCID: PMC11506752 DOI: 10.3390/biom14101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
This study offers an in-depth analysis of the mitochondrial genome of Selene dorsalis (Gill 1863), a species native to the Eastern Atlantic Ocean. The circular mitochondrial DNA molecule measures 16,541 base pairs and comprises 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA genes, and a control region (CR). The nucleotide composition exhibits a notable adenine-thymine (AT) bias, accounting for 53.13%, which aligns with other species in the Carangidae family. Most PCGs initiate with the ATG codon, with the exception of Cytochrome C oxidase subunit I, which starts with GTG. Analysis of relative synonymous codon usage reveals that leucine and serine are the most prevalent amino acids in the mitochondrial genome of S. dorsalis and its congeners (S. vomer and S. setapinnis). All tRNAs display the typical cloverleaf structure, though tRNA Serine (S1) lacks a dihydrouracil arm. Pairwise comparisons of synonymous and nonsynonymous substitutions for all PCGs yielded values below '1', indicating strong purifying selection. The CR spans 847 bp, representing 5.12% of the mitochondrial genome, and is characterized by high AT content (62.81%). It is situated between tRNA-Pro (TGG) and tRNA-Phe (GAA). The CR contains conserved sequence blocks, with CSB-1 being the longest at 22 bp and CSB-D the shortest at 18 bp. Phylogenetic analysis, using Bayesian and Maximum-likelihood trees constructed from concatenated PCGs across 72 species, successfully differentiates S. dorsalis from other carangids. This study also explores how ocean currents and gyres might influence lineage diversification and parapatric speciation of Selene species between the Atlantic and Pacific Oceans. These results highlight the importance of the mitochondrial genome in elucidating the structural organization and evolutionary dynamics of S. dorsalis and its relatives within marine ecosystems.
Collapse
Affiliation(s)
- Emmanuel Ofosu Mireku Ewusi
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Fisheries Commission, Ministry of Fisheries and Aquaculture Development, Fisheries Scientific Survey Division, Tema P.O. Box BT 62, Ghana
| | - Soo Rin Lee
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Ah Ran Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Yunji Go
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hsu Htoo
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Sangdeok Chung
- Distant Water Fisheries Resources Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Muhammad Hilman Fu’adil Amin
- Advanced Tropical Biodiversity, Genomics, and Conservation Research Group, Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Sapto Andriyono
- Department of Marine, Faculty of Fisheries and Marine, Airlangga University, Surabaya 60115, Indonesia
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Advanced Tropical Biodiversity, Genomics, and Conservation Research Group, Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Shantanu Kundu
- Ocean and Fisheries Development International Cooperation Institute, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
3
|
Ali R, Gebhardt ME, Lupiya JS, Muleba M, Norris DE. The first complete mitochondrional genome of Anopheles gibbinsi using a skimming sequencing approach. F1000Res 2024; 13:553. [PMID: 39036652 PMCID: PMC11258543 DOI: 10.12688/f1000research.148473.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 07/23/2024] Open
Abstract
Mosquitoes belonging to the genus Anopheles are the only vectors of human malaria. Anopheles gibbinsi has been linked to malaria transmission in Kenya, with recent collections in Zambia reporting the mosquito species exhibiting zoophilic and exophilic behavioral patterns with occasional contact with humans. Given the paucity of genetic data, and challenges to identification and molecular taxonomy of the mosquitoes belonging to the Anopheles genus; we report the first complete mitochondrial genome of An. gibbinsi using a genome skimming approach. An Illumina Novaseq 6000 platform was used for sequencing, the length of the mitochondrial genome was 15401 bp, with 78.5% AT content comprised of 37 genes. Phylogenetic analysis by maximum likelihood using concatenation of the 13 protein coding genes demonstrated that An. marshallii was the closest relative based on existing sequence data. This study demonstrates that the skimming approach is an inexpensive and efficient approach for mosquito species identification and concurrent taxonomic rectification, which may be a useful alternative for generating reference sequence data for evolutionary studies among the Culicidae.
Collapse
Affiliation(s)
- Renee Ali
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mary E. Gebhardt
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | - Douglas E. Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Littleford-Colquhoun B, Kartzinel TR. A CRISPR-based strategy for targeted sequencing in biodiversity science. Mol Ecol Resour 2024; 24:e13920. [PMID: 38153158 DOI: 10.1111/1755-0998.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Many applications in molecular ecology require the ability to match specific DNA sequences from single- or mixed-species samples with a diagnostic reference library. Widely used methods for DNA barcoding and metabarcoding employ PCR and amplicon sequencing to identify taxa based on target sequences, but the target-specific enrichment capabilities of CRISPR-Cas systems may offer advantages in some applications. We identified 54,837 CRISPR-Cas guide RNAs that may be useful for enriching chloroplast DNA across phylogenetically diverse plant species. We tested a subset of 17 guide RNAs in vitro to enrich plant DNA strands ranging in size from diagnostic DNA barcodes of 1,428 bp to entire chloroplast genomes of 121,284 bp. We used an Oxford Nanopore sequencer to evaluate sequencing success based on both single- and mixed-species samples, which yielded mean chloroplast sequence lengths of 2,530-11,367 bp, depending on the experiment. In comparison to mixed-species experiments, single-species experiments yielded more on-target sequence reads and greater mean pairwise identity between contigs and the plant species' reference genomes. But nevertheless, these mixed-species experiments yielded sufficient data to provide ≥48-fold increase in sequence length and better estimates of relative abundance for a commercially prepared mixture of plant species compared to DNA metabarcoding based on the chloroplast trnL-P6 marker. Prior work developed CRISPR-based enrichment protocols for long-read sequencing and our experiments pioneered its use for plant DNA barcoding and chloroplast assemblies that may have advantages over workflows that require PCR and short-read sequencing. Future work would benefit from continuing to develop in vitro and in silico methods for CRISPR-based analyses of mixed-species samples, especially when the appropriate reference genomes for contig assembly cannot be known a priori.
Collapse
Affiliation(s)
- Bethan Littleford-Colquhoun
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Tyler R Kartzinel
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
5
|
Girard MG, Santos MD, Bemis KE. New species of redbait from the Philippines (Teleostei, Emmelichthyidae, Emmelichthys). Zookeys 2024; 1196:95-109. [PMID: 38602272 PMCID: PMC10999954 DOI: 10.3897/zookeys.1196.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/15/2024] [Indexed: 04/12/2024] Open
Abstract
We describe a new species of redbait in the genus Emmelichthys collected from fish markets on Panay and Cebu islands in the Visayas region of the Philippines. The species is externally similar to E.struhsakeri but is diagnosable by two prominent fleshy papillae associated with the cleithrum and fewer pectoral-fin rays (18-19 vs. 19-21) and gill rakers (30-33 vs. 34-41). Additionally, mitochondrial DNA differentiates this taxon from other species of Emmelichthys. We generate mitochondrial genomes for two of the three type specimens and several other emmelichthyids to place the new taxon in a phylogenetic context. Analysis of the protein-coding mitochondrial loci calls into question the monophyly of two emmelichthyid genera (Emmelichthys and Erythrocles) and highlights the need for subsequent analyses targeting the intrarelationships of the Emmelichthyidae.
Collapse
Affiliation(s)
- Matthew G. Girard
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USANational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
- Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USAUniversity of KansasLawrenceUnited States of America
| | - Mudjekeewis D. Santos
- Genetic Fingerprinting Laboratory, National Fisheries Research and Development Institute, Quezon City, 1103, PhilippinesGenetic Fingerprinting Laboratory, National Fisheries Research and Development InstituteQuezon CityPhilippines
| | - Katherine E. Bemis
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USANational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
- National Systematics Laboratory, Office of Science and Technology, NOAA Fisheries, Washington, DC, 20560, USANational Systematics Laboratory, Office of Science and TechnologyWashingtonUnited States of America
| |
Collapse
|
6
|
Baeza JA, Stephens NC, Baker A, Lyons A, Franks B, Pirro S, Feldheim KA. Insights into the nuclear and mitochondrial genome of the Lemon shark Negaprion brevirostris using low-coverage sequencing: Genome size, repetitive elements, mitochondrial genome, and phylogenetic placement. Gene 2024; 894:147939. [PMID: 38572145 PMCID: PMC10990291 DOI: 10.1016/j.gene.2023.147939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The Lemon shark Negaprion brevirostris is an important species experiencing conservation issues that is in need of genomic resources. Herein, we conducted a genome survey sequencing in N. brevirostris and determined genome size, explored repetitive elements, assembled and annotated the 45S rRNA DNA operon, and assembled and described in detail the mitochondrial genome. Lastly, the phylogenetic position of N. brevirostris in the family Carcharhinidae was examined using translated protein coding genes. The estimated haploid genome size ranged between 2.29 and 2.58 Gbp using a k-mer analysis, which is slightly below the genome size estimated for other sharks belonging to the family Carcharhinidae. Using a k-mer analysis, approx. 64-71 % of the genome of N. brevirostris was composed of repetitive elements. A relatively large proportion of the 'repeatome' could not be annotated. Taking into account only annotated repetitive elements, Class I - Long Interspersed Nuclear Element (LINE) were the most abundant repetitive elements followed by Class I - Penelope and Satellite DNA. The nuclear ribosomal operon was fully assembled. The AT-rich complete mitochondrial genome was 16,703 bp long and encoded 13 protein coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. Negaprion brevirostris is closely related to the genera Carcharhinus, Glyphis and Lamiopsis in the family Carcharinidae. This new genomic resources will aid with the development of conservation plans for this large coastal shark.
Collapse
Affiliation(s)
- J. Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Smithsonian Marine Station at Fort Pierce, Smithsonian Institution, Fort Pierce, FL, USA
- Departamento de Biología Marina, Universidad Catolica del Norte, Coquimbo, Chile
| | | | - Alyssa Baker
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Andrew Lyons
- Marine Science Research Institute, Jacksonville University, Florida, USA
| | - Bryan Franks
- Marine Science Research Institute, Jacksonville University, Florida, USA
| | | | - Kevin A. Feldheim
- Pritzker Laboratory for Molecular Systematics and Evolution, Field Museum of Natural History, Chicago, IL, USA
| |
Collapse
|
7
|
Kundu S, Kang HE, Kim AR, Lee SR, Kim EB, Amin MHF, Andriyono S, Kim HW, Kang K. Mitogenomic Characterization and Phylogenetic Placement of African Hind, Cephalopholis taeniops: Shedding Light on the Evolution of Groupers (Serranidae: Epinephelinae). Int J Mol Sci 2024; 25:1822. [PMID: 38339100 PMCID: PMC10855530 DOI: 10.3390/ijms25031822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The global exploration of evolutionary trends in groupers, based on mitogenomes, is currently underway. This research extensively investigates the structure of and variations in Cephalopholis species mitogenomes, along with their phylogenetic relationships, focusing specifically on Cephalopholis taeniops from the Eastern Atlantic Ocean. The generated mitogenome spans 16,572 base pairs and exhibits a gene order analogous to that of the ancestral teleost's, featuring 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an AT-rich control region. The mitogenome of C. taeniops displays an AT bias (54.99%), aligning with related species. The majority of PCGs in the mitogenome initiate with the start codon ATG, with the exceptions being COI (GTG) and atp6 (TTG). The relative synonymous codon usage analysis revealed the maximum abundance of leucine, proline, serine, and threonine. The nonsynonymous/synonymous ratios were <1, which indicates a strong negative selection among all PCGs of the Cephalopholis species. In C. taeniops, the prevalent transfer RNAs display conventional cloverleaf secondary structures, except for tRNA-serine (GCT), which lacks a dihydrouracil (DHU) stem. A comparative examination of conserved domains and sequence blocks across various Cephalopholis species indicates noteworthy variations in length and nucleotide diversity. Maximum likelihood, neighbor-joining, and Bayesian phylogenetic analyses, employing the concatenated PCGs and a combination of PCGs + rRNAs, distinctly separate all Cephalopholis species, including C. taeniops. Overall, these findings deepen our understanding of evolutionary relationships among serranid groupers, emphasizing the significance of structural considerations in mitogenomic analyses.
Collapse
Affiliation(s)
- Shantanu Kundu
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Hye-Eun Kang
- Institute of Marine Life Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Ah Ran Kim
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Soo Rin Lee
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Eun-Bi Kim
- Ocean Georesources Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea;
| | - Muhammad Hilman Fu’adil Amin
- Advance Tropical Biodiversity, Genomics, and Conservation Research Group, Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia;
| | - Sapto Andriyono
- Department of Marine, Faculty of Fisheries and Marine, Airlangga University, Surabaya 60115, Indonesia
| | - Hyun-Woo Kim
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyoungmi Kang
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
8
|
Hoban ML, Bunce M, Bowen BW. Plumbing the depths with environmental DNA (eDNA): Metabarcoding reveals biodiversity zonation at 45-60 m on mesophotic coral reefs. Mol Ecol 2023; 32:5590-5608. [PMID: 37728237 DOI: 10.1111/mec.17140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Mesophotic coral ecosystems (MCEs) are tropical reefs found at depths of ~30-150 m, below the region most heavily impacted by heat stress and other disturbances. Hence, MCEs may serve as potential refugia for threatened shallow reefs, but they also harbour depth-endemic fauna distinct from shallow reefs. Previous studies have characterized biodiversity patterns along depth gradients, but focussed primarily on conspicuous taxa (fishes, corals, etc.). Environmental DNA (eDNA) metabarcoding offers a more holistic approach to assess biodiversity patterns across the tree of life. Here, we use three metabarcoding assays targeting fishes (16S rRNA), eukaryotes (18S rDNA) and metazoans (COI) to assess biodiversity change from the surface to ~90 m depth across 15-m intervals at three sites within the Hawaiian Archipelago. We observed significant community differences between most depth zones, with distinct zonation centred at 45-60 m for eukaryotes and metazoans, but not for fishes. This finding may be attributable to the higher mobility of reef fishes, although methodological limitations are likely a contributing factor. The possibility for MCEs to serve as refugia is not excluded for fishes, but invertebrate communities >45 m are distinct, indicating limited connectivity for the majority of reef fauna. This study provides a new approach for surveying biodiversity on MCEs, revealing patterns in a much broader context than the limited-taxon studies that comprise the bulk of our present knowledge.
Collapse
Affiliation(s)
- Mykle L Hoban
- Hawai'i Institute of Marine Biology, Kāne'ohe, Hawai'i, USA
| | - Michael Bunce
- Department of Conservation, Wellington, New Zealand
- Trace and Environmental DNA Laboratory, Curtin University, Perth, Western Australia, Australia
| | - Brian W Bowen
- Hawai'i Institute of Marine Biology, Kāne'ohe, Hawai'i, USA
| |
Collapse
|
9
|
Bemis KE, Girard MG, Santos MD, Carpenter KE, Deeds JR, Pitassy DE, Flores NAL, Hunter ES, Driskell AC, Macdonald KS, Weigt LA, Williams JT. Biodiversity of Philippine marine fishes: A DNA barcode reference library based on voucher specimens. Sci Data 2023; 10:411. [PMID: 37355644 PMCID: PMC10290705 DOI: 10.1038/s41597-023-02306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023] Open
Abstract
Accurate identification of fishes is essential for understanding their biology and to ensure food safety for consumers. DNA barcoding is an important tool because it can verify identifications of both whole and processed fishes that have had key morphological characters removed (e.g., filets, fish meal); however, DNA reference libraries are incomplete, and public repositories for sequence data contain incorrectly identified sequences. During a nine-year sampling program in the Philippines, a global biodiversity hotspot for marine fishes, we developed a verified reference library of cytochrome c oxidase subunit I (COI) sequences for 2,525 specimens representing 984 species. Specimens were primarily purchased from markets, with additional diversity collected using rotenone or fishing gear. Species identifications were verified based on taxonomic, phenotypic, and genotypic data, and sequences are associated with voucher specimens, live-color photographs, and genetic samples catalogued at Smithsonian Institution, National Museum of Natural History. The Biodiversity of Philippine Marine Fishes dataset is released herein to increase knowledge of species diversity and distributions and to facilitate accurate identification of market fishes.
Collapse
Affiliation(s)
- Katherine E Bemis
- National Systematics Laboratory, Office of Science and Technology, NOAA Fisheries, Washington, D.C., 20560, USA.
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, USA.
| | - Matthew G Girard
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, USA.
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, 66045, USA.
| | - Mudjekeewis D Santos
- Genetic Fingerprinting Laboratory, National Fisheries Research and Development Institute, Quezon City, 1103, Philippines
| | - Kent E Carpenter
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Jonathan R Deeds
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, 20740, USA
| | - Diane E Pitassy
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, USA
| | - Nicko Amor L Flores
- Genetic Fingerprinting Laboratory, National Fisheries Research and Development Institute, Quezon City, 1103, Philippines
| | - Elizabeth S Hunter
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, 20740, USA
| | - Amy C Driskell
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, USA
| | - Kenneth S Macdonald
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, USA
| | - Lee A Weigt
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, USA
| | - Jeffrey T Williams
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, USA.
| |
Collapse
|
10
|
Thompson LR, Thielen P. Decoding dissolved information: environmental DNA sequencing at global scale to monitor a changing ocean. Curr Opin Biotechnol 2023; 81:102936. [PMID: 37060640 DOI: 10.1016/j.copbio.2023.102936] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 04/17/2023]
Abstract
The use of environmental DNA (eDNA) technology for environmental monitoring is rapidly expanding, with applications for fisheries, coral reefs, harmful algal blooms, invasive and endangered species, and biodiversity monitoring. By enabling detection of species over space and time, eDNA fulfills a fundamental need of environmental surveys. Traditional surveys are expensive, require significant capital expenditure, and can be destructive; eDNA offers promise for cheaper, less invasive, and higher-resolution (i.e. genetic) assessments of environments and stocks. However, challenges in quantification, detection limits, biobanking capacity, reference databases, and data management and integration remain significant hurdles to efficient eDNA monitoring at global and decadal scale. Here, we consider the current state of eDNA technology and its suitability for the problems for which it is being used. We explore the current best practices, the logistical and social challenges that prevent eDNA from widespread adoption and benefit, and the emerging technologies that may address those challenges.
Collapse
Affiliation(s)
- Luke R Thompson
- Northern Gulf Institute, Mississippi State University, 2 Research Blvd, Starkville, MS 39759, USA; Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, 4301 Rickenbacker Cswy, Miami, FL 33149, USA.
| | - Peter Thielen
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723-6099, USA
| |
Collapse
|