1
|
Yang Z, Wang L, Zhang X, Zeng B, Zhang Z, Liu X. LCASPMDA: a computational model for predicting potential microbe-drug associations based on learnable graph convolutional attention networks and self-paced iterative sampling ensemble. Front Microbiol 2024; 15:1366272. [PMID: 38846568 PMCID: PMC11153849 DOI: 10.3389/fmicb.2024.1366272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Numerous studies show that microbes in the human body are very closely linked to the human host and can affect the human host by modulating the efficacy and toxicity of drugs. However, discovering potential microbe-drug associations through traditional wet labs is expensive and time-consuming, hence, it is important and necessary to develop effective computational models to detect possible microbe-drug associations. Methods In this manuscript, we proposed a new prediction model named LCASPMDA by combining the learnable graph convolutional attention network and the self-paced iterative sampling ensemble strategy to infer latent microbe-drug associations. In LCASPMDA, we first constructed a heterogeneous network based on newly downloaded known microbe-drug associations. Then, we adopted the learnable graph convolutional attention network to learn the hidden features of nodes in the heterogeneous network. After that, we utilized the self-paced iterative sampling ensemble strategy to select the most informative negative samples to train the Multi-Layer Perceptron classifier and put the newly-extracted hidden features into the trained MLP classifier to infer possible microbe-drug associations. Results and discussion Intensive experimental results on two different public databases including the MDAD and the aBiofilm showed that LCASPMDA could achieve better performance than state-of-the-art baseline methods in microbe-drug association prediction.
Collapse
Affiliation(s)
| | - Lei Wang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
| | | | | | - Zhen Zhang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
| | - Xin Liu
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
| |
Collapse
|
2
|
Rusic D, Kumric M, Seselja Perisin A, Leskur D, Bukic J, Modun D, Vilovic M, Vrdoljak J, Martinovic D, Grahovac M, Bozic J. Tackling the Antimicrobial Resistance "Pandemic" with Machine Learning Tools: A Summary of Available Evidence. Microorganisms 2024; 12:842. [PMID: 38792673 PMCID: PMC11123121 DOI: 10.3390/microorganisms12050842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial resistance is recognised as one of the top threats healthcare is bound to face in the future. There have been various attempts to preserve the efficacy of existing antimicrobials, develop new and efficient antimicrobials, manage infections with multi-drug resistant strains, and improve patient outcomes, resulting in a growing mass of routinely available data, including electronic health records and microbiological information that can be employed to develop individualised antimicrobial stewardship. Machine learning methods have been developed to predict antimicrobial resistance from whole-genome sequencing data, forecast medication susceptibility, recognise epidemic patterns for surveillance purposes, or propose new antibacterial treatments and accelerate scientific discovery. Unfortunately, there is an evident gap between the number of machine learning applications in science and the effective implementation of these systems. This narrative review highlights some of the outstanding opportunities that machine learning offers when applied in research related to antimicrobial resistance. In the future, machine learning tools may prove to be superbugs' kryptonite. This review aims to provide an overview of available publications to aid researchers that are looking to expand their work with new approaches and to acquaint them with the current application of machine learning techniques in this field.
Collapse
Affiliation(s)
- Doris Rusic
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (D.R.); (A.S.P.); (D.L.); (J.B.); (D.M.)
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (M.K.); (M.V.); (J.V.); (D.M.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Ana Seselja Perisin
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (D.R.); (A.S.P.); (D.L.); (J.B.); (D.M.)
| | - Dario Leskur
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (D.R.); (A.S.P.); (D.L.); (J.B.); (D.M.)
| | - Josipa Bukic
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (D.R.); (A.S.P.); (D.L.); (J.B.); (D.M.)
| | - Darko Modun
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (D.R.); (A.S.P.); (D.L.); (J.B.); (D.M.)
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (M.K.); (M.V.); (J.V.); (D.M.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Josip Vrdoljak
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (M.K.); (M.V.); (J.V.); (D.M.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Dinko Martinovic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (M.K.); (M.V.); (J.V.); (D.M.)
- Department of Maxillofacial Surgery, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia
| | - Marko Grahovac
- Department of Pharmacology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (M.K.); (M.V.); (J.V.); (D.M.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| |
Collapse
|
3
|
Zhao J, Kuang L, Hu A, Zhang Q, Yang D, Wang C. OGNNMDA: a computational model for microbe-drug association prediction based on ordered message-passing graph neural networks. Front Genet 2024; 15:1370013. [PMID: 38689654 PMCID: PMC11058190 DOI: 10.3389/fgene.2024.1370013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024] Open
Abstract
In recent years, many excellent computational models have emerged in microbe-drug association prediction, but their performance still has room for improvement. This paper proposed the OGNNMDA framework, which applied an ordered message-passing mechanism to distinguish the different neighbor information in each message propagation layer, and it achieved a better embedding ability through deeper network layers. Firstly, the method calculates four similarity matrices based on microbe functional similarity, drug chemical structure similarity, and their respective Gaussian interaction profile kernel similarity. After integrating these similarity matrices, it concatenates the integrated similarity matrix with the known association matrix to obtain the microbe-drug heterogeneous matrix. Secondly, it uses a multi-layer ordered message-passing graph neural network encoder to encode the heterogeneous network and the known association information adjacency matrix, thereby obtaining the final embedding features of the microbe-drugs. Finally, it inputs the embedding features into the bilinear decoder to get the final prediction results. The OGNNMDA method performed comparative experiments, ablation experiments, and case studies on the aBiofilm, MDAD and DrugVirus datasets using 5-fold cross-validation. The experimental results showed that OGNNMDA showed the strongest prediction performance on aBiofilm and MDAD and obtained sub-optimal results on DrugVirus. In addition, the case studies on well-known drugs and microbes also support the effectiveness of the OGNNMDA method. Source codes and data are available at: https://github.com/yyzg/OGNNMDA.
Collapse
Affiliation(s)
- Jiabao Zhao
- School of Computer Science and School of Cyberspace Science, Xiangtan University, Xiangtan, China
| | - Linai Kuang
- School of Computer Science and School of Cyberspace Science, Xiangtan University, Xiangtan, China
| | - An Hu
- School of Computer Science and School of Cyberspace Science, Xiangtan University, Xiangtan, China
| | - Qi Zhang
- School of Computer Science and School of Cyberspace Science, Xiangtan University, Xiangtan, China
| | - Dinghai Yang
- School of Computer Science and School of Cyberspace Science, Xiangtan University, Xiangtan, China
| | - Chunxiang Wang
- Hunan Institute of Engineering College of textile and clothing, Xiangtan, China
| |
Collapse
|
4
|
Kuang H, Zhang Z, Zeng B, Liu X, Zuo H, Xu X, Wang L. A novel microbe-drug association prediction model based on graph attention networks and bilayer random forest. BMC Bioinformatics 2024; 25:78. [PMID: 38378437 PMCID: PMC10877932 DOI: 10.1186/s12859-024-05687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND In recent years, the extensive use of drugs and antibiotics has led to increasing microbial resistance. Therefore, it becomes crucial to explore deep connections between drugs and microbes. However, traditional biological experiments are very expensive and time-consuming. Therefore, it is meaningful to develop efficient computational models to forecast potential microbe-drug associations. RESULTS In this manuscript, we proposed a novel prediction model called GARFMDA by combining graph attention networks and bilayer random forest to infer probable microbe-drug correlations. In GARFMDA, through integrating different microbe-drug-disease correlation indices, we constructed two different microbe-drug networks first. And then, based on multiple measures of similarity, we constructed a unique feature matrix for drugs and microbes respectively. Next, we fed these newly-obtained microbe-drug networks together with feature matrices into the graph attention network to extract the low-dimensional feature representations for drugs and microbes separately. Thereafter, these low-dimensional feature representations, along with the feature matrices, would be further inputted into the first layer of the Bilayer random forest model to obtain the contribution values of all features. And then, after removing features with low contribution values, these contribution values would be fed into the second layer of the Bilayer random forest to detect potential links between microbes and drugs. CONCLUSIONS Experimental results and case studies show that GARFMDA can achieve better prediction performance than state-of-the-art approaches, which means that GARFMDA may be a useful tool in the field of microbe-drug association prediction in the future. Besides, the source code of GARFMDA is available at https://github.com/KuangHaiYue/GARFMDA.git.
Collapse
Affiliation(s)
- Haiyue Kuang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China
| | - Zhen Zhang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.
| | - Bin Zeng
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.
| | - Xin Liu
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.
| | - Hao Zuo
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China
| | - Xingye Xu
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China
| | - Lei Wang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.
| |
Collapse
|
5
|
Tan H, Zhang Z, Liu X, Chen Y, Yang Z, Wang L. MDSVDNV: predicting microbe-drug associations by singular value decomposition and Node2vec. Front Microbiol 2024; 14:1303585. [PMID: 38260900 PMCID: PMC10800927 DOI: 10.3389/fmicb.2023.1303585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Recent researches have demonstrated that microbes are crucial for the growth and development of the human body, the movement of nutrients, and human health. Diseases may arise as a result of disruptions and imbalances in the microbiome. The pathological investigation of associated diseases and the advancement of clinical medicine can both benefit from the identification of drug-associated microbes. Methods In this article, we proposed a new prediction model called MDSVDNV to infer potential microbe-drug associations, in which the Node2vec network embedding approach and the singular value decomposition (SVD) matrix decomposition method were first adopted to produce linear and non-linear representations of microbe interactions. Results and discussion Compared with state-of-the-art competitive methods, intensive experimental results demonstrated that MDSVDNV could achieve the best AUC value of 98.51% under a 5-fold CV, which indicated that MDSVDNV outperformed existing competing models and may be an effective method for discovering latent microbe-drug associations in the future.
Collapse
Affiliation(s)
| | - Zhen Zhang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
| | | | | | | | - Lei Wang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
| |
Collapse
|
6
|
Wang S, Li J, Wang D, Xu D, Jin J, Wang Y. Predicting Drug-Disease Associations Through Similarity Network Fusion and Multi-View Feature Projection Representation. IEEE J Biomed Health Inform 2023; 27:5165-5176. [PMID: 37527303 DOI: 10.1109/jbhi.2023.3300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Predicting drug-disease associations (DDAs) through computational methods has become a prevalent trend in drug development because of their high efficiency and low cost. Existing methods usually focus on constructing heterogeneous networks by collecting multiple data resources to improve prediction ability. However, potential association possibilities of numerous unconfirmed drug-related or disease-related pairs are not sufficiently considered. In this article, we propose a novel computational model to predict new DDAs. First, a heterogeneous network is constructed, including four types of nodes (drugs, targets, cell lines, diseases) and three types of edges (associations, association scores, similarities). Second, an updating and merging-based similarity network fusion method, termed UM-SF, is presented to fuse various similarity networks with diverse weights. Finally, an intermediate layer-mediated multi-view feature projection representation method, termed IM-FP, is proposed to calculate the predicted DDA scores. This method uses multiple association scores to construct multi-view drug features, then projects them into disease space through the intermediate layer, where an intermediate layer similarity constraint is designed to learn the projection matrices. Results of comparative experiments reveal the effectiveness of our innovations. Comparisons with other state-of-the-art models by the 10-fold cross-validation experiment indicate our model's advantage on AUROC and AUPR metrics. Moreover, our proposed model successfully predicted 107 novel high-ranked DDAs.
Collapse
|