1
|
Yuan Z, Nag R, Cummins E. Human exposure to micro/nano-plastics through vegetables, fruits, and grains - A predictive modelling approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135900. [PMID: 39316918 DOI: 10.1016/j.jhazmat.2024.135900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
The emergence of human exposure (HE) to micro/nano-plastics (MN-P) via the food chain is a significant public health concern. This study aimed to evaluate HE from ingesting vegetables, fruits, and grains using linear regression models to analyse MN-P size-concentration relationships and bioaccumulation factors (BF). For Irish adults, the Estimated Daily Intake (EDI) of MN-Ps was calculated, considering potential internalisation in these foods, with a sensitivity analysis addressing variability and uncertainty. The simulated mean (SM) root stomatal diameter in selected plants was 620 nm, indicating the potential uptake of MN-Ps smaller than this size. The SM BF for vegetables was 24.24 for nanoplastics (NP). Limited NP data led to the use of metal nanoparticle (MNP) data, yielding an overall BF of 3.22 for pooled vegetables, fruits, and grains. Potential HE levels of MN-Ps in agricultural soil were simulated at 6.05 × 104 n/kg (SM), with predicted MN-P levels in edible plants at 1.47 × 106 n/kg of food products. The simulated EDI of MN-Ps through all crops was 1.62 × 103 n/kg bw/day, with vegetables contributing the most to MN-P exposure, followed by fruits and grains. Sensitivity parameters are ranked as MN-P abundance in soil > bioaccumulation factor > food consumption.
Collapse
Affiliation(s)
- Zhihao Yuan
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin, Ireland.
| | - Rajat Nag
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin, Ireland.
| | - Enda Cummins
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
2
|
Sehrish AK, Ahmad S, Nafees M, Mahmood Z, Ali S, Du W, Kashif Naeem M, Guo H. Alleviated cadmium toxicity in wheat (Triticum aestivum L.) by the coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria on TaEIL1 gene expression, biochemical and physiological changes. CHEMOSPHERE 2024; 364:143113. [PMID: 39151580 DOI: 10.1016/j.chemosphere.2024.143113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Cadmium (Cd) contamination in agricultural soil is a major global concern among the multitude of human health and food security. Zinc oxide nanoparticles (ZnO-NPs) and plant growth promoting rhizobacteria (PGPR) have been known to combat heavy metal toxicity in crops. Herein, the study intended to explore the interactive effect of treatments mediated by inoculation of PGPR and foliar applied ZnO-NPs to alleviate Cd induced phytotoxicity in wheat plants which is rarely investigated. For this purpose, TaEIL1 expression, morpho-physiological, and biochemical traits of wheat were examined. Our results revealed that Cd reduced growth and biomass, disrupted plant physiological and biochemical traits, and further expression patterns of TaEIL1. The foliar application of ZnO-NPs improved growth attributes, photosynthetic pigments, and gas exchange parameters in a dose-additive manner, and this effect was further amplified with a combination of PGPR. The combined application of ZnO-NPs (100 mg L-1) with PGPR considerably increased the catalase (CAT; 52.4%), peroxidase (POD; 57.4%), superoxide dismutase (SOD; 60.1%), ascorbate peroxidase (APX; 47.4%), leading to decreased malondialdehyde (MDA; 47.4%), hydrogen peroxide (H2O2; 38.2%) and electrolyte leakage (EL; 47.3%) under high Cd (20 mg kg-1) stress. Furthermore, results revealed a significant reduction in roots (56.3%), shoots (49.4%), and grains (59.4%) Cd concentration after the Combined treatment of ZnO-NPs and PGPR as compared to the control. Relative expression of TaEIL1 (two homologues) was evaluated under control (Cd 0), Cd, ZnO-NPs, PGPR, and combined treatments. Expression profiling revealed a differential expression pattern of TaEIL1 under different treatments. The expression pattern of TaEIL1 genes was upregulated under Cd stress but downregulated under combined ZnO-NPs and PGPR, revealing its crucial role in Cd stress tolerance. Inferentially, ZnO-NPs and PGPR showed significant potential to alleviate Cd toxicity in wheat by modulating the antioxidant defense system and TaEIL1 expression. By inhibiting Cd uptake, and facilitating their detoxification, this innovative approach ensures food safety and security.
Collapse
Affiliation(s)
- Adiba Khan Sehrish
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Shoaib Ahmad
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Zahid Mahmood
- Crop Science Institute, National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Muhammad Kashif Naeem
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre (NARC), Islamabad, Pakistan
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000, Quanzhou, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
3
|
Naseem Z, Naveed M, Asif M, Alamri S, Nawaz S, Siddiqui MH, Mustafa A. Enhancing chromium resistance and bulb quality in onion (Allium cepa L.) through copper nanoparticles and possible health risk. BMC PLANT BIOLOGY 2024; 24:777. [PMID: 39143569 PMCID: PMC11325661 DOI: 10.1186/s12870-024-05460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Chromium (Cr) is a toxic metal in soil-plant system, hence causing possible health risks prominently in the areas with forgoing industrial activities. Copper nanoparticles (Cu NPs) have been reported as an excellent adsorbent for pollutants. Therefore, this study investigates how copper nanoparticles enhance onion growth while decreasing chromium uptake in onion plants. Additionally, it examines the potential health risks of consuming onion plants with elevated chromium levels. The results demonstrated that the addition of CuNPs at 15 mg kg-1 significantly improved the plant height (48%), leaf length (37%), fresh weight of root (61%), root dry weight (70%), fresh weight of bulb (52%), bulb dry weight (59%), leaves fresh weight (52%) and dry weight of leaves (59%), leaf area (72%), number of onion leaves per plant (60%), Chl. a (42%), chl. b (36%), carotenoids (40%), total chlorophyll (40%), chlorophyll contents SPAD value (56%), relative water contents (35%), membrane stability index (16%), total sugars (25%), crude protein (21%), ascorbic acid (19%) and ash contents (64%) at 10 mg kg-1 Cr. Whereas, maximum decline of Cr by 46% in roots, 68% in leaves and 92% in bulb was found with application of 15 mg kg-1 of Cu NPs in onion plants under 10 mg kg-1 Cr toxicity. The health risk assessment parameters of onion plants showed minimum values 0.0028 for average daily intake (ADI), 0.001911 for Non-cancer risk (NCR), and 0.001433 for cancer risk (CR) in plants treated with Cu NPs at 15 mg kg-1 concentration grown in soil spiked with 10 mg kg-1 chromium. It is concluded that Cu NPs at 15 mg kg-1 concentration improved growth of plants in control as well as Cr contaminated soil. Therefore, use of Cu NPs at 15 mg kg-1 concentration is recommended for improving growth of plants under normal and metal contaminated soils.
Collapse
Affiliation(s)
- Zainab Naseem
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Muhammad Asif
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saher Nawaz
- Department of Botany, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Adnan Mustafa
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China, Botanical Garden, Chinese Academy of Sciences Guangzhou, Guangzhou, 510650, China.
| |
Collapse
|
4
|
Sutulienė R, Brazaitytė A, Urbutis M, Tučkutė S, Duchovskis P. Nanoparticle Effects on Ice Plant Mineral Accumulation under Different Lighting Conditions and Assessment of Hazard Quotients for Human Health. PLANTS (BASEL, SWITZERLAND) 2024; 13:681. [PMID: 38475526 DOI: 10.3390/plants13050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Nanotechnologies can improve plant growth, protect it from pathogens, and enrich it with bioactive and mineral substances. In order to fill the lack of knowledge about the combined environmental effects of lighting and nanoparticles (NPs) on plants, this study is designed to investigate how different HPS and LED lighting combined with CuO and ZnO NPs influence the elemental composition of ice plants (Mesembryanthemum crystallinum L.). Plants were grown in hydroponic systems with LED and HPS lighting at 250 ± 5 μmol m-2 s-1 intensity, sprayed with aqueous suspensions of CuO (40 nm, 30 ppm) and ZnO (35-45 nm, 800 ppm) NPs; their elemental composition was measured using an ICP-OES spectrometer and hazard quotients were calculated. LED lighting combined with the application of ZnO NPs significantly affected Zn accumulation in plant leaves. Cu accumulation was higher when plants were treated with CuO NPs and HPS illumination combined. The calculated hazard quotients showed that the limits are not exceeded when applying our selected concentrations and growth conditions on ice plants. In conclusion, ice plants had a more significant positive effect on the accumulation of macro- and microelements under LED lighting than HPS. NPs had the strongest effect on the increase in their respective microelements.
Collapse
Affiliation(s)
- Rūta Sutulienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno 30, Kaunas Distr., 54333 Babtai, Lithuania
| | - Aušra Brazaitytė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno 30, Kaunas Distr., 54333 Babtai, Lithuania
| | - Martynas Urbutis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno 30, Kaunas Distr., 54333 Babtai, Lithuania
| | - Simona Tučkutė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno 30, Kaunas Distr., 54333 Babtai, Lithuania
| | - Pavelas Duchovskis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno 30, Kaunas Distr., 54333 Babtai, Lithuania
| |
Collapse
|
5
|
Jalil S, Alghanem SMS, Al-Huqail AA, Nazir MM, Zulfiqar F, Ahmed T, Ali S, H A Abeed A, Siddique KHM, Jin X. Zinc oxide nanoparticles mitigated the arsenic induced oxidative stress through modulation of physio-biochemical aspects and nutritional ions homeostasis in rice (Oryza sativa L.). CHEMOSPHERE 2023; 338:139566. [PMID: 37474036 DOI: 10.1016/j.chemosphere.2023.139566] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Zinc oxide nanoparticles (nZn) have emerged as vital agents in combating arsenic (As) stress in plants. However, their role in mitigation of As induced oxidative stress is less studied. Therefore, this study aimed to assess the comparative role of nZn and ZnO in alleviating As toxicity in rice genotype "9311". The results of this study revealed that nZn demonstrated superior efficacy compared to ZnO in mitigating As toxicity. This superiority can be attributed to the unique size and structure of nZn, which enhances its ability to alleviate As toxicity. Exposure to As at a concentration of 25 μM L-1 led to significant reductions in shoot length, root length, shoot dry weight, and root dry weight by 39%, 51%, 30%, and 46%, respectively, while the accumulation of essential nutrients such as magnesium (Mg), potassium (K), iron (Fe), manganese (Mn), and zinc (Zn) decreased by 25%-47% compared to the control plants. Additionally, As exposure resulted in stomatal closure and structural damage to vital cellular components such as grana thylakoids (GT), starch granules (SG), and the nucleolus. However, the application of nZn at a concentration of 30 mg L-1 exhibited significant alleviation of As toxicity, resulting in a reduction of As accumulation by 54% in shoots and 62% in roots of rice seedlings. Furthermore, nZn demonstrated the ability to scavenge reactive oxygen species (ROS) like hydrogen peroxide (H2O2) and superoxide anion (O2.-), while significantly promoted the gas exchange parameters, chlorophyll content (SPAD value), fluorescence efficiency (Fv/m) and antioxidant enzyme activities under As-induced stress. These findings highlight the potential of nZn in mitigating the adverse impacts of As contamination in rice plants. However, further research is necessary to fully comprehend the underlying mechanisms responsible for the protective effects of nZn and to determine the optimal conditions for their application in real-world agricultural settings.
Collapse
Affiliation(s)
- Sanaullah Jalil
- The Advanced Seed Institute, The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Suliman M S Alghanem
- Biology Department, College of Science, Qassim University, Burydah, 52571, Saudi Arabia
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Temoor Ahmed
- Xianghu Laboratory, Hangzhou, 311231, PR China; Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Sharafat Ali
- The Advanced Seed Institute, The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth, WA, 6001, Australia
| | - Xiaoli Jin
- The Advanced Seed Institute, The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Ahmed R, Zia-Ur-Rehman M, Sabir M, Usman M, Rizwan M, Ahmad Z, Alharby HF, Al-Zahrani HS, Alsamadany H, Aldhebiani AY, Alzahrani YM, Bamagoos AA. Differential response of nano zinc sulphate with other conventional sources of Zn in mitigating salinity stress in rice grown on saline-sodic soil. CHEMOSPHERE 2023; 327:138479. [PMID: 36965530 DOI: 10.1016/j.chemosphere.2023.138479] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Salinization causes the degradation of the soil and threatening the global food security but the application of essential micronutrients like zinc (Zn), improve the plant growth by stabilizing the plant cell and root development. Keeping in view the above-mentioned scenario, an experiment was conducted to compare the efficiency of conventional Zn fertilizers like zinc sulphate (ZnSO4), zinc ethylene diamine tetra acetic acid (Zn-EDTA) and advance nano Zn fertilizers such as zinc sulphate nanoparticles (ZnSO4NPs), and zinc oxide nanoparticles (ZnONPs) (applied at the rate of 5 and 10 mg/kg) in saline-sodic soil. Results revealed that the maximum plant height (67%), spike length (72%), root length (162%), number of tillers (71%), paddy weight (100%), shoot dry weight (158%), and root dry weight (119%) was found in ZnSO4NPs applied at the rate of 10 mg/kg (ZnSO4NPs-10) as compared to salt-affected control (SAC). Similarly, the plants physiological attributes like chlorophyll contents (91%), photosynthesis rate (113%), transpiration rate (106%), stomatal conductance (56%) and internal CO2 (11%) were increased by the application of ZnSO4NPs-10, as compared to SAC. The maximum Zn concentration in root (153%), shoot (205%) and paddy (167%) found in ZnSO4NPs-10, as compared to control. In the body of rice plants, other nutrients like phosphorus and potassium were also increased by the application of ZnSO4NPs-10 and soil chemical attributes such as sodium and sodium adsorption ratio were decreased. The current experiment concluded that the application of ZnSO4NPs at the rate of 10 mg/kg in salt-affected paddy soil increased the growth, physiology, up take of essential nutrients and yield of rice by balancing the cationic ratio under salt stress.
Collapse
Affiliation(s)
- Rubaz Ahmed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan.
| | - Muhammad Sabir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, 38000, Faisalabad, Pakistan.
| | - Zahoor Ahmad
- Department of Botany, University of Central Punjab, Constituent College, Bahawalpur, 63100, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hassan S Al-Zahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amal Y Aldhebiani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Yahya M Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Atif A Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
7
|
Chen F, Li Y, Zia-Ur-Rehman M, Hussain SM, Qayyum MF, Rizwan M, Alharby HF, Alabdallah NM, Alharbi BM, Ali S. Combined effects of zinc oxide nanoparticles and melatonin on wheat growth, chlorophyll contents, cadmium (Cd) and zinc uptake under Cd stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161061. [PMID: 36565889 DOI: 10.1016/j.scitotenv.2022.161061] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) and melatonin (MT) have been known to regulate heavy metal toxicities in plants in some studies, the effect of their combined use on cadmium (Cd) uptake by wheat (Triticum aestivum L.) and underlying mechanisms is largely unknown. Thus, plant growth, uptake and translocation of Cd mediated by soil applied ZnONPs and foliar applied MT were investigated in wheat grown in Cd polluted soil under ambient conditions. The results depicted that ZnONPs stimulated the growth, chlorophyll contents, and yield of wheat in a dose additive way and this effect was further increased with foliar application of MT. 100 mg/kg of ZnONPs alone enhanced the grain yield by 60.5 % and this increase was about 177.5 % under combined ZnONPs and 100 μM MT treatment. ZnONPs treatments decreased Cd concentration whereas increased zinc (Zn) concentrations in shoots, roots, husks and grains and the effect was further increased with exogenous MT combined with NPs in a dose-additive way. 50 and 100 mg/kg ZnONPs treatments alone decreased grain Cd by 6.5 %, and 20 % and increased the Zn concentration by 20.1 % and 24 % than control. 100 mg/kg ZnONPs +100 μM MT treatment decreased the grain Cd by 63.5 % and increased grain Zn by 51 % than control treatment. Total Cd uptake (tissues biomass × Cd concentration in respective tissues) in shoots, roots, husks and grains increased with ZnONPs alone or combined with MT than control whereas soil post-harvest bioavailable Cd concentration decreased with treatments than control. The Cd reduction in grains was due to increase in biomass and Zn concentration thereby decreasing bioavailable Cd in soil and its accumulation in plants. This study suggested that combined use of ZnONPs and MT may provide new approaches for minimizing Cd and biofortification of Zn in edible parts of plants.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Yuhang Li
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Science, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University Multan, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|