1
|
Malebary SJ, Alromema N. iDLB-Pred: identification of disordered lipid binding residues in protein sequences using convolutional neural network. Sci Rep 2024; 14:24724. [PMID: 39433833 PMCID: PMC11494137 DOI: 10.1038/s41598-024-75700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Proteins, nucleic acids, and lipids all interact with intrinsically disordered protein areas. Lipid-binding regions are involved in a variety of biological processes as well as a number of human illnesses. The expanding body of experimental evidence for these interactions and the dearth of techniques to anticipate them from the protein sequence serve as driving forces. Although large-scale laboratory techniques are considered to be essential for equipment for studying binding residues, they are time consuming and costly, making it challenging for researchers to predict lipid binding residues. As a result, computational techniques are being looked at as a different strategy to overcome this difficulty. To predict disordered lipid-binding residues (DLBRs), we proposed iDLB-Pred predictor utilizing benchmark dataset to compute feature through extraction techniques to identify relevant patterns and information. Various classification techniques, including deep learning methods such as Convolutional Neural Networks (CNNs), Deep Neural Networks (DNNs), Multilayer Perceptrons (MLPs), Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Gated Recurrent Units (GRUs), were employed for model training. The proposed model, iDLB-Pred, was rigorously validated using metrics such as accuracy, sensitivity, specificity, and Matthew's correlation coefficient. The results demonstrate the predictor's exceptional performance, achieving accuracy rates of 81% on an independent dataset and 86% in 10-fold cross-validation.
Collapse
Affiliation(s)
- Sharaf J Malebary
- Department of Information Technology, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, P.O. Box 344, 21911, Rabigh, Saudi Arabia.
| | - Nashwan Alromema
- Department of Computer Science, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, P.O. Box 344, 21911, Rabigh, Saudi Arabia
| |
Collapse
|
2
|
Malebary SJ, Alromema N, Suleman MT, Saleem M. m5c-iDeep: 5-Methylcytosine sites identification through deep learning. Methods 2024; 230:80-90. [PMID: 39089345 DOI: 10.1016/j.ymeth.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
5-Methylcytosine (m5c) is a modified cytosine base which is formed as the result of addition of methyl group added at position 5 of carbon. This modification is one of the most common PTM that used to occur in almost all types of RNA. The conventional laboratory methods do not provide quick reliable identification of m5c sites. However, the sequence data readiness has made it feasible to develop computationally intelligent models that optimize the identification process for accuracy and robustness. The present research focused on the development of in-silico methods built using deep learning models. The encoded data was then fed into deep learning models, which included gated recurrent unit (GRU), long short-term memory (LSTM), and bi-directional LSTM (Bi-LSTM). After that, the models were subjected to a rigorous evaluation process that included both independent set testing and 10-fold cross validation. The results revealed that LSTM-based model, m5c-iDeep, outperformed revealing 99.9 % accuracy while comparing with existing m5c predictors. In order to facilitate researchers, m5c-iDeep was also deployed on a web-based server which is accessible at https://taseersuleman-m5c-ideep-m5c-ideep.streamlit.app/.
Collapse
Affiliation(s)
- Sharaf J Malebary
- Department of Information Technology, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia
| | - Nashwan Alromema
- Department of Computer Science, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia.
| | - Muhammad Taseer Suleman
- Department of Criminology and Forensic Sciences, Lahore Garrison University, Lahore Pakistan; Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore 54770 Pakistan
| | - Maham Saleem
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore 54770 Pakistan
| |
Collapse
|
3
|
Suleman MT, Alturise F, Alkhalifah T, Khan YD. m1A-Ensem: accurate identification of 1-methyladenosine sites through ensemble models. BioData Min 2024; 17:4. [PMID: 38360720 PMCID: PMC10868122 DOI: 10.1186/s13040-023-00353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/31/2023] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND 1-methyladenosine (m1A) is a variant of methyladenosine that holds a methyl substituent in the 1st position having a prominent role in RNA stability and human metabolites. OBJECTIVE Traditional approaches, such as mass spectrometry and site-directed mutagenesis, proved to be time-consuming and complicated. METHODOLOGY The present research focused on the identification of m1A sites within RNA sequences using novel feature development mechanisms. The obtained features were used to train the ensemble models, including blending, boosting, and bagging. Independent testing and k-fold cross validation were then performed on the trained ensemble models. RESULTS The proposed model outperformed the preexisting predictors and revealed optimized scores based on major accuracy metrics. CONCLUSION For research purpose, a user-friendly webserver of the proposed model can be accessed through https://taseersuleman-m1a-ensem1.streamlit.app/ .
Collapse
Affiliation(s)
- Muhammad Taseer Suleman
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, 54770, Pakistan
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia.
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, 54770, Pakistan
| |
Collapse
|
4
|
Harun-Or-Roshid M, Maeda K, Phan LT, Manavalan B, Kurata H. Stack-DHUpred: Advancing the accuracy of dihydrouridine modification sites detection via stacking approach. Comput Biol Med 2024; 169:107848. [PMID: 38145601 DOI: 10.1016/j.compbiomed.2023.107848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
Dihydrouridine (DHU, D) is one of the most abundant post-transcriptional uridine modifications found in tRNA, mRNA, and snoRNA, closely associated with disease pathogenesis and various biological processes in eukaryotes. Identifying D sites is important for understanding the modification mechanisms and/or epigenetic regulation. However, biological experiments for detecting D sites are time-consuming and expensive. Given these challenges, computational methods have been developed for accurately identifying the D sites in genome-wide datasets. However, existing methods have some limitations, and their prediction performance needs to be improved. In this work, we have developed a new computational predictor for accurately identifying D sites called Stack-DHUpred. Briefly, we trained 66 baseline models or single-feature models by connecting six machine learning classifiers with eleven different feature encoding methods and stacked different baseline models to build stacked ensemble learning models. Subsequently, the optimal combination of the baseline models was identified for the construction of the final stacked model. Remarkably, the Stack-DHUpred outperformed the existing predictors on our new independent dataset, indicating that the stacking approach significantly improved the prediction performance. We have made Stack-DHUpred available to the public through a web server (http://kurata35.bio.kyutech.ac.jp/Stack-DHUpred) and a standalone program (https://github.com/kuratahiroyuki/Stack-DHUpred). We believe that Stack-DHUpred will be a valuable tool for accelerating the discovery of D modifications and understanding their role in post-transcriptional regulation.
Collapse
Affiliation(s)
- Md Harun-Or-Roshid
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Kazuhiro Maeda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Le Thi Phan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Balachandran Manavalan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|
5
|
Hassan A, Alkhalifah T, Alturise F, Khan YD. RCCC_Pred: A Novel Method for Sequence-Based Identification of Renal Clear Cell Carcinoma Genes through DNA Mutations and a Blend of Features. Diagnostics (Basel) 2022; 12:diagnostics12123036. [PMID: 36553042 PMCID: PMC9776995 DOI: 10.3390/diagnostics12123036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
To save lives from cancer, it is very crucial to diagnose it at its early stages. One solution to early diagnosis lies in the identification of the cancer driver genes and their mutations. Such diagnostics can substantially minimize the mortality rate of this deadly disease. However, concurrently, the identification of cancer driver gene mutation through experimental mechanisms could be an expensive, slow, and laborious job. The advancement of computational strategies that could help in the early prediction of cancer growth effectively and accurately is thus highly needed towards early diagnoses and a decrease in the mortality rates due to this disease. Herein, we aim to predict clear cell renal carcinoma (RCCC) at the level of the genes, using the genomic sequences. The dataset was taken from IntOgen Cancer Mutations Browser and all genes' standard DNA sequences were taken from the NCBI database. Using cancer-associated information of mutation from INTOGEN, the benchmark dataset was generated by creating the mutations in original sequences. After extensive feature extraction, the dataset was used to train ANN+ Hist Gradient boosting that could perform the classification of RCCC genes, other cancer-associated genes, and non-cancerous/unknown (non-tumor driver) genes. Through an independent dataset test, the accuracy observed was 83%, whereas the 10-fold cross-validation and Jackknife validation yielded 98% and 100% accurate results, respectively. The proposed predictor RCCC_Pred is able to identify RCCC genes with high accuracy and efficiency and can help scientists/researchers easily predict and diagnose cancer at its early stages.
Collapse
Affiliation(s)
- Arfa Hassan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass 58892, Qassim, Saudi Arabia
- Correspondence:
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass 58892, Qassim, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan
| |
Collapse
|