1
|
Gong W, Zeng Y, Li X, Zhao Z, Shen N, Zhou Y, Bian Y, Xiao Y. Molecular Profiling of Rice Straw Degradability Discrepancy in Stropharia rugosoannulata Core Germplasm. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25379-25390. [PMID: 39480020 DOI: 10.1021/acs.jafc.4c05965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The rice-S. rugosoannulata pattern is a rapidly growing agricultural practice for straw disposal and mushroom production in China. However, different S. rugosoannulata strains show a large variation in rice straw degradability. Here, we constructed a core collection of S. rugosoannulata containing 14 strains with rich genetic diversity. The molecular profiling of the lignocellulose degradability discrepancy of S. rugosoannulata strains was then explored using enzyme activity assays and transcriptome analysis. The results indicated that mycelial growth rate, lignocellulolytic enzyme activities, and rice straw degradability differed widely among the S. rugosoannulata core strains. The genes encoding lignin modifying and degrading auxiliary enzymes, oxidases, glycoside hydrolases, and detoxification proteins were differentially expressed between two representative S. rugosoannulata strains, resulting in differences in their lignocellulolytic enzyme activities and further causing differences in lignocellulose degradability. This study is useful to improve the production efficiency of S. rugosoannulata and promote the recycling of rice straw.
Collapse
Affiliation(s)
- Wenbing Gong
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yuyu Zeng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinru Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhidong Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Nan Shen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yan Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yinbing Bian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Xiao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
2
|
Zhao S, Li X, Yao X, Wan W, Xu L, Guo L, Bai J, Hu C, Yu H. Transformation of antibiotics to non-toxic and non-bactericidal products by laccases ensure the safety of Stropharia rugosoannulata. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135099. [PMID: 38981236 DOI: 10.1016/j.jhazmat.2024.135099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The substantial use of antibiotics contributes to the spread and evolution of antibiotic resistance, posing potential risks to food production systems, including mushroom production. In this study, the potential risk of antibiotics to Stropharia rugosoannulata, the third most productive straw-rotting mushroom in China, was assessed, and the underlying mechanisms were investigated. Tetracycline exposure at environmentally relevant concentrations (<500 μg/L) did not influence the growth of S. rugosoannulata mycelia, while high concentrations of tetracycline (>500 mg/L) slightly inhibited its growth. Biodegradation was identified as the main antibiotic removal mechanism in S. rugosoannulata, with a degradation rate reaching 98.31 % at 200 mg/L tetracycline. High antibiotic removal efficiency was observed with secreted proteins of S. rugosoannulata, showing removal efficiency in the order of tetracyclines > sulfadiazines > quinolones. Antibiotic degradation products lost the ability to inhibit the growth of Escherichia coli, and tetracycline degradation products could not confer a growth advantage to antibiotic-resistant strains. Two laccases, SrLAC1 and SrLAC9, responsible for antibiotic degradation were identified based on proteomic analysis. Eleven antibiotics from tetracyclines, sulfonamides, and quinolones families could be transformed by these two laccases with degradation rates of 95.54-99.95 %, 54.43-100 %, and 5.68-57.12 %, respectively. The biosafety of the antibiotic degradation products was evaluated using the Toxicity Estimation Software Tool (TEST), revealing a decreased toxicity or no toxic effect. None of the S. rugosoannulata fruiting bodies from seven provinces in China contained detectable antibiotic-resistance genes (ARGs). This study demonstrated that S. rugosoannulata can degrade antibiotics into non-toxic and non-bactericidal products that do not accelerate the spread of antibiotic resistance, ensuring the safety of S. rugosoannulata production.
Collapse
Affiliation(s)
- Shuxue Zhao
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Xiaohang Li
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Xingdong Yao
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Wei Wan
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Lili Xu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Chunhui Hu
- Instrumental analysis center of Qingdao Agricultural University, Qingdao 266109, Shandong Province, China.
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China.
| |
Collapse
|
3
|
Hao H, Yue Y, Chen Q, Yang Y, Kuai B, Wang Q, Xiao T, Chen H, Zhang J. Effects of an efficient straw decomposition system mediated by Stropharia rugosoannulata on soil properties and microbial communities in forestland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170226. [PMID: 38280599 DOI: 10.1016/j.scitotenv.2024.170226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Cultivation of Stropharia rugosoannulata with straw in forestland is effective for straw biodegradation and can prevent the waste of straw resources and environmental pollution and generate economic benefits. However, there is a lack of systematic evaluation of spent mushroom substrate (SMS) input into forestland, such as soil properties and microbial succession. In this experiment, 0 (CK), 10 (SA), 20 (SB), 30 (SC), 40 (SD), and 50 (SE) kg/m2 straw were used to cultivate S. rugosoannulata, and two soil layers (0-10 cm, 10-20 cm) of the cultivated forestland were analyzed. The results indicated that SMS significantly promoted nutrient accumulation in forestland. The bacterial alpha diversity in the SC treatment group was greater than that in the control and gradually decreased to the control level with interannual changes, while the trend of fungal alpha diversity was opposite to that of bacterial alpha diversity. Furthermore, the SC treatment group positively affected soil nitrogen metabolism-related microorganisms for two consecutive years and significantly promoted tree growth. Habitat niche breadth and null model analysis revealed that bacterial communities were more sensitive than fungal communities after SMS input. Linear mixed model (LMM) analysis revealed that SMS supplementation significantly positively affected bacteria (Gammaproteobacteria and Bacteroidota) and significantly negatively affected fungi (Coniochaetales). The constructed fungal-bacterial co-occurrence networks exhibited modularity, and the five types of bacteria were significantly correlated with soil organic matter (SOM), soil organic carbon (SOC), available potassium (AK), available phosphorus (AAP) and available nitrogen (AN) levels. The structural equation model (SEM) showed that bacterial diversity responded more to changes in soil nutrients than did fungal diversity. Overall, 30 kg/m2 of straw decomposition and 2 years of continuous cultivation were beneficial to soil health. This study provides new insights into the rational decomposition of straw and maintenance of forestland ecological balance by S. rugosoannulata.
Collapse
Affiliation(s)
- Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yihong Yue
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qun Chen
- School of Biology Food and Environment, Hefei University, Hefei 23060, China
| | - Yan Yang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Tingting Xiao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
4
|
Xu J, Yan X, Jia X, Wang Y, Xu H, Yu H, He L, Zheng B, Wu X. A new strategy to improve Ganoderma polysaccharides production by symbiotic fungi elicitors through activating the biosynthetic pathway. Int J Biol Macromol 2023; 235:123798. [PMID: 36841391 DOI: 10.1016/j.ijbiomac.2023.123798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Ganoderma lucidum polysaccharides (GLP) attract growing attention due to their remarkable bioactivities, but the low content in raw materials remains a bottleneck severely restricting their application. We previously found a higher polysaccharides accumulation in Ganoderma lucidum cultured in continuous cropping soil, and soil symbiotic fungi are presumed as the key among many factors. Herein, 33 symbiotic fungi were isolated from the soil, and fungal elicitors were prepared to investigate their biotic eliciting effect on GLP biosynthesis. Most elicitors were found to significantly improve GLP production, among which the NO.16 molecularly identified as Penicillium citrinum, exhibited the optimum eliciting effect with GLP yield increasing by 3.4 times. Differences in the biosynthetic pathway genes expressions and the monosaccharide components of GLP were further analyzed. The transcriptions of the main genes of GLP biosynthetic pathway were up-regulated under PCE treatments, suggesting it improves GLP production by activating transcriptions of the biosynthetic pathway genes. Moreover, PCE eliciting significantly altered the monosaccharide compositions of GLP with Gal, Man, GalA, GlcA, and Fuc increasing by 8.17 %, 5.68 %, 5.41 %, 2.66 %, and 1.51 % respectively, but Glc decreased by 23.43 %, which may result in the activity change. It can serve as a new strategy to improve GLP production.
Collapse
Affiliation(s)
- Juan Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China; National Innovation Alliance of Lingzhi and Sanyeqing Industry, Lin'an 311300, China
| | - Xiaoyun Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China
| | - Xumei Jia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China
| | - Ying Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China; National Innovation Alliance of Lingzhi and Sanyeqing Industry, Lin'an 311300, China
| | - Haishun Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China; National Innovation Alliance of Lingzhi and Sanyeqing Industry, Lin'an 311300, China
| | - Haizheng Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China; National Innovation Alliance of Lingzhi and Sanyeqing Industry, Lin'an 311300, China
| | - Liang He
- Zhejiang Provincial academy of forestry, Hangzhou 310000, China
| | - BingSong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Xueqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Zhejiang A&F University, Lin'an 311300, China; National Innovation Alliance of Lingzhi and Sanyeqing Industry, Lin'an 311300, China.
| |
Collapse
|