1
|
Zare S, Kabiri M, Amini Y, Najafi A, Mohammadpour F, Ayati SH, Nikpoor AR, Tafaghodi M. Immunological Assessment of Chitosan or Trimethyl Chitosan-Coated PLGA Nanospheres Containing Fusion Antigen as the Novel Vaccine Candidates Against Tuberculosis. AAPS PharmSciTech 2021; 23:15. [PMID: 34893923 DOI: 10.1208/s12249-021-02146-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023] Open
Abstract
The crucial challenge in tuberculosis (TB) as a chronic infectious disease is to present a novel vaccine candidate that improves current vaccination and provides efficient protection in individuals. The present study aimed to evaluate the immune efficacy of multi-subunit vaccines containing chitosan (CHT)- or trimethyl chitosan (TMC)-coated PLGA nanospheres to stimulate cell-mediated and mucosal responses against Mycobacterium Tuberculosis (Mtb) in an animal model. The surface-modified PLGA nanoparticles (NPs) containing tri-fusion protein from three Mtb antigens were produced by the double emulsion technique. The subcutaneously or nasally administered PLGA vaccines in the absence or presence of BCG were assessed to compare the levels of mucosal IgA, IgG1, and IgG2a production as well as secretion of IFN-γ, IL-17, IL-4, and TGF-β cytokines. According to the release profile, the tri-fusion encapsulated in modified PLGA NPs demonstrated a biphasic release profile including initial burst release on the first day and sustained release within 18 days. All designed PLGA vaccines induced a shift of Th1/Th2 balance toward Th1-dominant response. Although immunized mice through subcutaneous injection elicited higher cell-mediated responses relative to the nasal vaccination, the intranasally administered groups stimulated robust mucosal IgA immunity. The modified PLGA NPs using TMC cationic polymer were more efficient to elevate Th1 and mucosal responses in comparison with the CHT-coated PLGA nanospheres. Our findings highlighted that the tri-fusion loaded in TMC-PLGA NPs may represent an efficient prophylactic vaccine and can be considered as a novel candidate against TB.
Collapse
|
2
|
Immunological Characterization of Proteins Expressed by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions Encoding the ESAT6-like Proteins. Vaccines (Basel) 2021; 9:vaccines9010027. [PMID: 33430286 PMCID: PMC7825740 DOI: 10.3390/vaccines9010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
The 6 kDa early secreted antigen target (ESAT6) is a low molecular weight and highly immunogenic protein of Mycobacterium tuberculosis with relevance in the diagnosis of tuberculosis and subunit vaccine development. The gene encoding the ESAT6 protein is located in the M. tuberculosis-specific genomic region known as the region of difference (RD)1. There are 11 M. tuberculosis-specific RDs absent in all of the vaccine strains of BCG, and three of them (RD1, RD7, and RD9) encode immunodominant proteins. Each of these RDs has genes for a pair of ESAT6-like proteins. The immunological characterizations of all the possible proteins encoded by genes in RD1, RD7 and RD9 have shown that, besides ESAT-6 like proteins, several other proteins are major antigens useful for the development of subunit vaccines to substitute or supplement BCG. Furthermore, some of these proteins may replace the purified protein derivative of M. tuberculosis in the specific diagnosis of tuberculosis by using interferon-gamma release assays and/or tuberculin-type skin tests. At least three subunit vaccine candidates containing ESAT6-like proteins as antigen components of multimeric proteins have shown efficacy in phase 1 and phase II clinical trials in humans.
Collapse
|
3
|
Whitlow E, Mustafa AS, Hanif SNM. An Overview of the Development of New Vaccines for Tuberculosis. Vaccines (Basel) 2020; 8:vaccines8040586. [PMID: 33027958 PMCID: PMC7712106 DOI: 10.3390/vaccines8040586] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022] Open
Abstract
Currently, there is only one licensed vaccine against tuberculosis (TB), the Bacillus Calmette–Guérin (BCG). Despite its protective efficacy against TB in children, BCG has failed to protect adults against pulmonary TB, lacks therapeutic value, and causes complications in immunocompromised individuals. Furthermore, it compromises the use of antigens present in the purified protein derivate of Mycobacterium tuberculosis in the diagnosis of TB. Many approaches, e.g., whole-cell organisms, subunit, and recombinant vaccines are currently being explored for safer and more efficacious TB vaccines than BCG. These approaches have been successful in developing a large number of vaccine candidates included in the TB vaccine pipeline and are at different stages of clinical trials in humans. This paper discusses current vaccination strategies, provides directions for the possible routes towards the development of new TB vaccines and highlights recent findings. The efforts for improved TB vaccines may lead to new licensed vaccines capable of replacing/supplementing BCG and conferring therapeutic value in patients with active/latent TB.
Collapse
Affiliation(s)
- E. Whitlow
- Department of Basic Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA;
| | - A. S. Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - S. N. M. Hanif
- Department of Basic Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA;
- Correspondence:
| |
Collapse
|
4
|
Abstract
In addition to antibiotics, vaccination is considered among the most efficacious methods in the control and the potential eradication of infectious diseases. New safe and effective vaccines against tuberculosis (TB) could be a very important tool and are called to play a significant role in the fight against TB resistant to antimicrobials. Despite the extended use of the current TB vaccine Bacillus Calmette-Guérin (BCG), TB continues to be transmitted actively and continues to be one of the 10 most important causes of death in the world. In the last 20 years, different TB vaccines have entered clinical trials. In this paper, we review the current use of BCG and the diversity of vaccines in clinical trials and their possible indications. New TB vaccines capable of protecting against respiratory forms of the disease caused by sensitive or resistant Mycobacterium tuberculosis strains would be extremely useful tools helping to prevent the emergence of multi-drug resistance.
Collapse
|
5
|
Mustafa AS. Vaccine Potential of Mycobacterial Antigens against Asthma. Med Princ Pract 2020; 29:404-411. [PMID: 32422630 PMCID: PMC7511680 DOI: 10.1159/000508719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022] Open
Abstract
Asthma is a cause of substantial burden of disease in the world, including both premature deaths and reduced quality of life. A leading hypothesis to explain the worldwide increase of asthma is the "hygiene hypothesis," which suggests that the increase in the prevalence of asthma is due to the reduction in exposure to infections/microbial antigens. In allergic asthma, the most common type of asthma, antigen-specific T helper (Th)2 and Th17 cells and their cytokines are primary mediators of the pathological consequences. In contrast, Th1 and T regulatory (Treg) cells and their cytokines play a protective role. This article aims to review the information on the effect of mycobacteria and their antigens in modulating Th2/Th17 responses towards Th1/Treg responses and protection against asthma in humans and animal models.
Collapse
Affiliation(s)
- Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait,
| |
Collapse
|
6
|
Seddon JA, Tugume L, Solomons R, Prasad K, Bahr NC. The current global situation for tuberculous meningitis: epidemiology, diagnostics, treatment and outcomes. Wellcome Open Res 2019; 4:167. [PMID: 32118118 PMCID: PMC7029758 DOI: 10.12688/wellcomeopenres.15535.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
Tuberculous meningitis (TBM) results from dissemination of M. tuberculosis to the cerebrospinal fluid (CSF) and meninges. Ischaemia, hydrocephalus and raised intracranial pressure frequently result, leading to extensive brain injury and neurodisability. The global burden of TBM is unclear and it is likely that many cases are undiagnosed, with many treated cases unreported. Untreated, TBM is uniformly fatal, and even if treated, mortality and morbidity are high. Young age and human immunodeficiency virus (HIV) infection are potent risk factors for TBM, while Bacillus Calmette-Guérin (BCG) vaccination is protective, particularly in young children. Diagnosis of TBM usually relies on characteristic clinical symptoms and signs, together with consistent neuroimaging and CSF parameters. The ability to confirm the TBM diagnosis via CSF isolation of M. tuberculosis depends on the type of diagnostic tests available. In most cases, the diagnosis remains unconfirmed. GeneXpert MTB/RIF and the next generation Xpert Ultra offer improved sensitivity and rapid turnaround times, and while roll-out has scaled up, availability remains limited. Many locations rely only on acid fast bacilli smear, which is insensitive. Treatment regimens for TBM are based on evidence for pulmonary tuberculosis treatment, with little consideration to CSF penetration or mode of drug action required. The World Health Organization recommends a 12-month treatment course, although data on which to base this duration is lacking. New treatment regimens and drug dosages are under evaluation, with much higher dosages of rifampicin and the inclusion of fluoroquinolones and linezolid identified as promising innovations. The inclusion of corticosteroids at the start of treatment has been demonstrated to reduce mortality in HIV-negative individuals but whether they are universally beneficial is unclear. Other host-directed therapies show promise but evidence for widespread use is lacking. Finally, the management of TBM within health systems is sub-optimal, with drop-offs at every stage in the care cascade.
Collapse
Affiliation(s)
- James A Seddon
- Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Lillian Tugume
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Regan Solomons
- Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Kameshwar Prasad
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Nathan C Bahr
- Department of Infectious Diseases, University of Kansas, Kansas City, KS, USA
| |
Collapse
|
7
|
Suliman S, Murphy M, Musvosvi M, Gela A, Meermeier EW, Geldenhuys H, Hopley C, Toefy A, Bilek N, Veldsman A, Hanekom WA, Johnson JL, Boom WH, Obermoser G, Huang H, Hatherill M, Lewinsohn DM, Nemes E, Scriba TJ. MR1-Independent Activation of Human Mucosal-Associated Invariant T Cells by Mycobacteria. THE JOURNAL OF IMMUNOLOGY 2019; 203:2917-2927. [PMID: 31611259 PMCID: PMC6859375 DOI: 10.4049/jimmunol.1900674] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) is the leading cause of mortality from a single infectious agent, Mycobacterium tuberculosis Relevant immune targets of the partially efficacious TB vaccine bacille Calmette-Guérin (BCG) remain poorly defined. Mucosal-associated invariant T (MAIT) cells are MHC-related protein 1 (MR1)-restricted T cells, which are reactive against M. tuberculosis, and underexplored as potential TB vaccine targets. We sought to determine whether BCG vaccination activated mycobacteria-specific MAIT cell responses in humans. We analyzed whole blood samples from M. tuberculosis-infected South African adults who were revaccinated with BCG after a six-month course of isoniazid preventative therapy. In vitro BCG stimulation potently induced IFN-γ expression by phenotypic (CD8+CD26+CD161+) MAIT cells, which constituted the majority (75%) of BCG-reactive IFN-γ-producing CD8+ T cells. BCG revaccination transiently expanded peripheral blood frequencies of BCG-reactive IFN-γ+ MAIT cells, which returned to baseline frequencies a year following vaccination. In another cohort of healthy adults who received BCG at birth, 53% of mycobacteria-reactive-activated CD8 T cells expressed CDR3α TCRs, previously reported as MAIT TCRs, expressing the canonical TRAV1-2-TRAJ33 MAIT TCRα rearrangement. CD26 and CD161 coexpression correlated with TRAV1-2+CD161+ phenotype more accurately in CD8+ than CD4-CD8- MAIT cells. Interestingly, BCG-induced IFN-γ expression by MAIT cells in vitro was mediated by the innate cytokines IL-12 and IL-18 more than MR1-induced TCR signaling, suggesting TCR-independent activation. Collectively, the data suggest that activation of blood MAIT cells by innate inflammatory cytokines is a major mechanism of responsiveness to vaccination with whole cell vaccines against TB or in vitro stimulation with mycobacteria (Clinical trial registration: NCT01119521).
Collapse
Affiliation(s)
- Sara Suliman
- South African Tuberculosis Vaccine Initiative, University of Cape Town, Cape Town 7925, South Africa; .,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa.,Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Melissa Murphy
- South African Tuberculosis Vaccine Initiative, University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative, University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Anele Gela
- South African Tuberculosis Vaccine Initiative, University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Erin W Meermeier
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239
| | - Hennie Geldenhuys
- South African Tuberculosis Vaccine Initiative, University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Christiaan Hopley
- South African Tuberculosis Vaccine Initiative, University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Asma Toefy
- South African Tuberculosis Vaccine Initiative, University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative, University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Ashley Veldsman
- South African Tuberculosis Vaccine Initiative, University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative, University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - John L Johnson
- Tuberculosis Research Unit, Case Western Reserve University School of Medicine, Cleveland, OH 44106.,Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - W Henry Boom
- Tuberculosis Research Unit, Case Western Reserve University School of Medicine, Cleveland, OH 44106.,Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Gerlinde Obermoser
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305; and.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Huang Huang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305; and.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - David M Lewinsohn
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative, University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, University of Cape Town, Cape Town 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
8
|
Méndez-Samperio P. Current challenges and opportunities for bacillus Calmette-Guérin replacement vaccine candidates. Scand J Immunol 2019; 90:e12772. [PMID: 31055842 DOI: 10.1111/sji.12772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/21/2019] [Indexed: 12/17/2022]
Abstract
Bacillus Calmette-Guérin (BCG) remains the only licensed vaccine against human tuberculosis (TB). BCG is a live-attenuated strain of Mycobacterium bovis, with limitations in efficacy against respiratory TB, the most common form of the disease responsible for transmission. However, continues to be used in the immunization programmes of different countries in the absence of another alternative. In order to improve BCG efficacy against pulmonary TB, in the current clinical TB vaccine pipeline, there are live-attenuated TB vaccines to replace BCG. This review discusses the current status of the development of live vaccine candidates designed to replace BCG from the rational strategies and immunological challenges to its clinical trial and identify key areas in the next years considered essential to confer improved safety and efficacy over BCG.
Collapse
|
9
|
Martin C, Aguilo N, Gonzalo-Asensio J. Vaccination against tuberculosis. Enferm Infecc Microbiol Clin 2018; 36:648-656. [PMID: 29627126 DOI: 10.1016/j.eimc.2018.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 01/24/2023]
Abstract
BCG (Bacille Calmette-Guérin) vaccination is included in the immunization schedule for tuberculosis endemic countries with a global coverage at birth close to 90% worldwide. BCG was attenuated from Mycobacterium bovis almost a century ago, and provides a strong protection against disseminated forms of the disease, though very limited against pulmonary forms of tuberculosis, responsible for transmission. Novel prophylactic tuberculosis vaccines are in clinical development either to replace BCG or to improve its protection against respiratory forms of the disease. There are limitations understanding the immunological responses involved and the precise type of long-lived immunity that new vaccines need to induce. MTBVAC is the first and only tuberculosis vaccine candidate based on live-attenuated Mycobacterium tuberculosis in clinical evaluation. MTBVAC clinical development plans to target tuberculosis prevention in newborns, as a BCG replacement strategy, and as secondary objective to be tested in adolescents and adults previous vaccinated with BCG.
Collapse
Affiliation(s)
- Carlos Martin
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, España; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, España; Servicio de Microbiología, Hospital Universitario Miguel Servet, ISS Aragón, Zaragoza, España.
| | - Nacho Aguilo
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, España; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, España
| | - Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, España; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, España; Servicio de Microbiología, Hospital Universitario Miguel Servet, ISS Aragón, Zaragoza, España
| |
Collapse
|
10
|
Arregui S, Iglesias MJ, Samper S, Marinova D, Martin C, Sanz J, Moreno Y. Data-driven model for the assessment of Mycobacterium tuberculosis transmission in evolving demographic structures. Proc Natl Acad Sci U S A 2018; 115:E3238-E3245. [PMID: 29563223 PMCID: PMC5889657 DOI: 10.1073/pnas.1720606115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the case of tuberculosis (TB), the capabilities of epidemic models to produce quantitatively robust forecasts are limited by multiple hindrances. Among these, understanding the complex relationship between disease epidemiology and populations' age structure has been highlighted as one of the most relevant. TB dynamics depends on age in multiple ways, some of which are traditionally simplified in the literature. That is the case of the heterogeneities in contact intensity among different age strata that are common to all airborne diseases, but still typically neglected in the TB case. Furthermore, while demographic structures of many countries are rapidly aging, demographic dynamics are pervasively ignored when modeling TB spreading. In this work, we present a TB transmission model that incorporates country-specific demographic prospects and empirical contact data around a data-driven description of TB dynamics. Using our model, we find that the inclusion of demographic dynamics is followed by an increase in the burden levels predicted for the next decades in the areas of the world that are most hit by the disease today. Similarly, we show that considering realistic patterns of contacts among individuals in different age strata reshapes the transmission patterns reproduced by the models, a result with potential implications for the design of age-focused epidemiological interventions.
Collapse
Affiliation(s)
- Sergio Arregui
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018 Zaragoza, Spain;
- Department of Theoretical Physics, University of Zaragoza, 50009 Zaragoza, Spain
| | - María José Iglesias
- Department of Microbiology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en red Enfermedades Respiratorias (CIBER), Carlos III Health Institute, 28029 Madrid, Spain
| | - Sofía Samper
- Centro de Investigación Biomédica en red Enfermedades Respiratorias (CIBER), Carlos III Health Institute, 28029 Madrid, Spain
- Instituto Aragonés de Ciencias de la Salud, Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
| | - Dessislava Marinova
- Department of Microbiology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en red Enfermedades Respiratorias (CIBER), Carlos III Health Institute, 28029 Madrid, Spain
| | - Carlos Martin
- Department of Microbiology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en red Enfermedades Respiratorias (CIBER), Carlos III Health Institute, 28029 Madrid, Spain
- Service of Microbiology, Miguel Servet Hospital, Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
| | - Joaquín Sanz
- Department of Genetics, Sainte-Justine Hospital Research Centre, Montreal, QC H3T1C5, Canada
- Department of Biochemistry, Faculty of Medicine, University of Montreal, Montreal, QC H3T1J4, Canada
| | - Yamir Moreno
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018 Zaragoza, Spain;
- Department of Theoretical Physics, University of Zaragoza, 50009 Zaragoza, Spain
- Institute for Scientific Interchange, ISI Foundation, 10126 Turin, Italy
| |
Collapse
|
11
|
Marinova D, Gonzalo-Asensio J, Aguilo N, Martin C. MTBVAC from discovery to clinical trials in tuberculosis-endemic countries. Expert Rev Vaccines 2017; 16:565-576. [PMID: 28447476 DOI: 10.1080/14760584.2017.1324303] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION BCG remains the only vaccine against tuberculosis (TB) in use today and despite its impressive global coverage, the nature of BCG protection against the pulmonary forms of TB remains subject to ongoing debate. Because of the limitations of BCG, novel TB vaccine candidates have been developed and several have reached the clinical pipeline. One of these candidates is MTBVAC, the first and only TB vaccine in the clinical pipeline to date based on live-attenuated Mycobacterium tuberculosis that has successfully entered clinical evaluation, a historic milestone in human vaccinology. Areas covered: This review describes development of MTBVAC from discovery to clinical development in high burden TB-endemic countries. The preclinical experiments where MTBVAC has shown to confer improved safety and efficacy over BCG are presented and the clinical development plans for MTBVAC are revealed. The search of all supportive literature in this manuscript was carried out via Pubmed. Expert commentary: Small experimental medicine trials in humans and preclinical efficacy studies with a strong immunological component mimicking clinical trial design are considered essential by the scientific community to help identify reliable vaccine-specific correlates of protection in order to support and accelerate community-wide efficacy trials of new TB vaccines.
Collapse
Affiliation(s)
- Dessislava Marinova
- a Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública , Universidad de Zaragoza , Zaragoza , Spain.,b CIBER Enfermedades Respiratorias , Instituto de Salud Carlos III , Madrid , Spain
| | - Jesus Gonzalo-Asensio
- a Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública , Universidad de Zaragoza , Zaragoza , Spain.,b CIBER Enfermedades Respiratorias , Instituto de Salud Carlos III , Madrid , Spain.,c Servicio de Microbiología , Hospital Universitario Miguel Servet, ISS Aragón , Zaragoza , Spain
| | - Nacho Aguilo
- a Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública , Universidad de Zaragoza , Zaragoza , Spain.,b CIBER Enfermedades Respiratorias , Instituto de Salud Carlos III , Madrid , Spain
| | - Carlos Martin
- a Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública , Universidad de Zaragoza , Zaragoza , Spain.,b CIBER Enfermedades Respiratorias , Instituto de Salud Carlos III , Madrid , Spain.,c Servicio de Microbiología , Hospital Universitario Miguel Servet, ISS Aragón , Zaragoza , Spain
| |
Collapse
|
12
|
Revaccination of Guinea Pigs With the Live Attenuated Mycobacterium tuberculosis Vaccine MTBVAC Improves BCG's Protection Against Tuberculosis. J Infect Dis 2017; 216:525-533. [DOI: 10.1093/infdis/jix030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/11/2017] [Indexed: 01/13/2023] Open
|