1
|
Lin YC, Yu WN, Yang WW, Wang N, Zhang QY, Guan YF, Wang SL, Ma RC. lncRNA PART1 improves sevoflurane-induced impairments in learning and cognitive function by regulating miR-16-5p expression and reducing neuroinflammation. Toxicol Res (Camb) 2025; 14:tfaf009. [PMID: 39872305 PMCID: PMC11766745 DOI: 10.1093/toxres/tfaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Sevoflurane is a commonly utilized inhalational anesthetic in surgical settings. Nevertheless, sevoflurane has been demonstrated to possess neurotoxic properties. The objective was to examine the neuroprotective function of long non-coding RNA prostate androgen-regulated transcript 1 (PART1) in sevoflurane-induced neurotoxicity and to elucidate its potential mechanism. The level of PART1 was quantified by RT-qPCR. The proliferation and apoptosis of HT22 cells were evaluated through CCK-8 assay and flow cytometry, respectively. To assess the protein level of IL-6, IL-1β, and TNF-α, ELISA was conducted. The levels of malondialdehyde, nitrite, and reduced glutathione along with the activity of superoxide dismutase were determined to evaluate oxidative stress. Verification of the targeting relationship between miR-16-5p and PART1 was performed using the dual-luciferase reporter assay. The Morris water maze test was used to assess the impact of PART1 on sevoflurane-induced learning and cognitive function in rats. PART1 levels were decreased in sevoflurane-treated HT22 cells and rats. PART1 suppressed sevoflurane-induced apoptosis and attenuated its inhibitory effect on cell proliferation. PART1 mitigated sevoflurane-induced inflammatory response and oxidative stress in HT22 cells through the regulation of miR-16-5p. PART1 suppressed oxidative damage and inflammatory response leading to improvement of learning and cognitive function in rats subjected to sevoflurane exposure. PART1 has the potential to regulate the sevoflurane-induced inflammatory response and oxidative stress via miR-16-5p, which in turn improves learning and cognitive function. Consequently, PART1 may be a promising therapeutic target for sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Yu Chan Lin
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang City, Guizhou Province, 550001, China
| | - Wan Ning Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang City, Liaoning Province, 110004, China
| | - Wei Wei Yang
- Department of Anesthesiology, Xi'an No.9 Hospital, No. 151 East Section of South Second Ring Road, Xi'an City, Shaanxi Province, 710054, China
| | - Nan Wang
- Department of Anesthesiology, Xi'an No.9 Hospital, No. 151 East Section of South Second Ring Road, Xi'an City, Shaanxi Province, 710054, China
| | - Qian Yun Zhang
- Department of Anesthesiology, Xi'an No.9 Hospital, No. 151 East Section of South Second Ring Road, Xi'an City, Shaanxi Province, 710054, China
| | - Yu Fei Guan
- Department of Anesthesiology, Xi'an No.9 Hospital, No. 151 East Section of South Second Ring Road, Xi'an City, Shaanxi Province, 710054, China
| | - Si Li Wang
- Department of Anesthesiology, Xi'an No.9 Hospital, No. 151 East Section of South Second Ring Road, Xi'an City, Shaanxi Province, 710054, China
| | - Rui Chen Ma
- Department of Anesthesiology, Xi'an Da xing Hospital affiliated to Yan'an University, No. 353 Laodong North Road, Lianhu District, Xi'an City, Shaanxi Province, 710082, China
| |
Collapse
|
2
|
Tunset ME, Haslene-Hox H, Larsen JB, Kondziella D, Nygård M, Pedersen SA, Vaaler A, Llorente A. Clinical studies of blood-borne Extracellular vesicles in psychiatry: A systematic review. J Psychiatr Res 2025; 182:373-390. [PMID: 39862765 DOI: 10.1016/j.jpsychires.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/02/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Biomarkers for the diagnosis and clinical management of psychiatric disorders are currently lacking. Extracellular vesicles (EVs), lipid membrane-encapsulated vesicles released by cells, hold promise as a source of biomarkers due to their ability to carry molecules that reflect the status of their donor cells and their ubiquitous presence in biofluids. This review examines the literature on EVs in biofluids from psychiatric disorder patients, and discuss how the published studies contribute to our understanding of the pathophysiology of these conditions and to the discovery of potential biomarkers. We analyzed 46 studies on blood-borne EVs; no investigations on cerebrospinal fluid-derived EVs were found. A significant number of studies lacked optimal description of the methodology and/or characterization of the isolated EVs. Moreover, many studies aimed to capture brain-derived EVs, but often capture-proteins with low brain specificity were used. Considering biomarkers, miRNAs were the most investigated molecular type, but based on the studies analyzed it was not possible to identify robust biomarker candidates for the investigated disorders. Additionally, we describe the contribution of EV studies in illuminating the pathophysiology of psychiatric disorders, including research on insulin resistance, inflammation, mitochondrial dysfunction, and the microbiota. We conclude that there is a shortage of studies with detailed methodology description and EV sample characterization in psychiatric research. To exploit the potential of EVs to investigate psychiatric disorders and identify biomarkers more studies and validated protocols using capture proteins with high specificity to brain cells are needed. The review protocol was pre-registered in the PROSPERO database under the registration number CRD42021277534.
Collapse
Affiliation(s)
- Mette Elise Tunset
- Department of Psychosis and Rehabilitation, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway; Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Hanne Haslene-Hox
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Jeanette Brun Larsen
- Department of Psychosis and Rehabilitation, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mona Nygård
- Department of Psychosis and Rehabilitation, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway; Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Arne Vaaler
- Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Acute Psychiatry, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
3
|
Patranabis S. Recent Advances in the miRNA-Mediated Regulation of Neuronal Differentiation and Death. Neuromolecular Med 2024; 26:52. [PMID: 39648193 DOI: 10.1007/s12017-024-08820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
The review aims to focus on the role of miRNA in gene regulation, related to differentiation and apoptosis of neurons, focusing on the array of miRNAs involved in the processes. miRNAs are a known class of small regulatory RNAs, which in association with RNA processing bodies, play major roles in different cellular events, such as neurogenesis and neuronal differentiation. miRNAs function in controlling neuronal events by targeting different important molecules of cellular signalling. The post-translational modification of Ago2 is crucial in modulating the neurons' miRNA-mediated regulation. Thus, understanding the crosstalk between cellular signalling and miRNA activity affecting neuronal events is very important to decipher novel targets and related signalling pathways, involved in neuronal survival and neurodegeneration.
Collapse
|
4
|
Lu Z, Fu J, Wu G, Yang Z, Wu X, Wang D, You Z, Nie Z, Sheng Q. Neuroprotection and Mechanism of Gas-miR36-5p from Gastrodia elata in an Alzheimer's Disease Model by Regulating Glycogen Synthase Kinase-3β. Int J Mol Sci 2023; 24:17295. [PMID: 38139125 PMCID: PMC10744203 DOI: 10.3390/ijms242417295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is currently the most common neurodegenerative disease. Glycogen synthase kinase 3β (GSK-3β) is a pivotal factor in AD pathogenesis. Recent research has demonstrated that plant miRNAs exert cross-kingdom regulation on the target genes in animals. Gastrodia elata (G. elata) is a valuable traditional Chinese medicine that has significant pharmacological activity against diseases of the central nervous system (CNS). Our previous studies have indicated that G. elata-specific miRNA plays a cross-kingdom regulatory role for the NF-κB signaling pathway in mice. In this study, further bioinformatics analysis suggested that Gas-miR36-5p targets GSK-3β. Through western blot, RT-qPCR, and assessments of T-AOC, SOD, and MDA levels, Gas-miR36-5p demonstrated its neuroprotective effects in an AD cell model. Furthermore, Gas-miR36-5p was detected in the murine brain tissues. The results of the Morris water maze test and western blot analysis provided positive evidence for reversing the learning deficits and hyperphosphorylation of Tau in AD mice, elucidating significant neuroprotective effects in an AD model following G. elata RNA administration. Our research emphasizes Gas-miR36-5p as a novel G. elata-specific miRNA with neuroprotective properties in Alzheimer's disease by targeting GSK-3β. Consequently, our findings provide valuable insights into the cross-kingdom regulatory mechanisms underlying G. elata-specific miRNA, presenting a novel perspective for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Sun Y, Gu Y, Gao X, Jin X, Wink M, Sharopov FS, Yang L, Sethi G. Lycorine suppresses the malignancy of breast carcinoma by modulating epithelial mesenchymal transition and β-catenin signaling. Pharmacol Res 2023; 195:106866. [PMID: 37499704 DOI: 10.1016/j.phrs.2023.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Lycorine, an isoquinoline alkaloid can exhibit significant anti-cancer effects. The present study was conducted to illustrate the underlying mechanisms of action of lycorine on breast carcinoma under in vitro and in vivo settings Tandem Mass Tag assay and Kyoto Encyclopedia of Genes and Genomes analysis revealed that 20 signaling pathways were closely related to tumorigenesis, especially Wnt signaling pathway and tight junctions. The results demonstrated that lycorine evidently inhibited the proliferation of MDA-MB-231 and MCF-7 cells with IC50 values of 1.84 ± 0.21 μM and 7.76 ± 1.16 μM, respectively. It also blocked cell cycle in G2/M phase, caused a decrease in mitochondrial membrane potential, and induced apoptosis pathways through regulating caspase-3, caspase-8, caspase-9, and PARP expression. Moreover, lycorine effectively repressed the β-catenin signaling and reversed epithelial-mesenchymal transition (EMT) process. Furthermore, 4T1/Luc homograft tumor model was used to further demonstrate that lycorine significantly inhibited the growth and metastasis of breast tumor. These findings highlight the significance of lycorine as potential anti-neoplastic agent to combat breast cancer.
Collapse
Affiliation(s)
- Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928, No.2 Street, Qiantang District, Hangzhou 310018, China.
| | - Yi Gu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928, No.2 Street, Qiantang District, Hangzhou 310018, China
| | - Xiaoyan Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928, No.2 Street, Qiantang District, Hangzhou 310018, China
| | - Xiaoyan Jin
- Department of Surgical Oncology, Zhejiang Taizhou Municipal Hospital, No. 218, Hengjie Road, Taizhou 318020, China
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 329, Heidelberg 69120, Germany
| | - Farukh S Sharopov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products", National Academy of Sciences of Tajikistan, No. 267, Айнй Road, Dushanbe 734025, Tajikistan
| | - Linjun Yang
- Department of Surgical Oncology, Zhejiang Taizhou Municipal Hospital, No. 218, Hengjie Road, Taizhou 318020, China.
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore..
| |
Collapse
|
6
|
Reinhold AK, Hartmannsberger B, Burek M, Rittner HL. Stabilizing the neural barrier - A novel approach in pain therapy. Pharmacol Ther 2023; 249:108484. [PMID: 37390969 DOI: 10.1016/j.pharmthera.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Chronic and neuropathic pain are a widespread burden. Incomplete understanding of underlying pathomechanisms is one crucial factor for insufficient treatment. Recently, impairment of the blood nerve barrier (BNB) has emerged as one key aspect of pain initiation and maintenance. In this narrative review, we discuss several mechanisms and putative targets for novel treatment strategies. Cells such as pericytes, local mediators like netrin-1 and specialized proresolving mediators (SPMs), will be covered as well as circulating factors including the hormones cortisol and oestrogen and microRNAs. They are crucial in either the BNB or similar barriers and associated with pain. While clinical studies are still scarce, these findings might provide valuable insight into mechanisms and nurture development of therapeutic approaches.
Collapse
Affiliation(s)
- Ann-Kristin Reinhold
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Beate Hartmannsberger
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Malgorzata Burek
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany.
| |
Collapse
|