1
|
Lee Y, Shim J, Ko N, Kim HJ, Kim JH, Kim H, Choi K. Docosahexaenoic acid supplementation during porcine oocyte in vitro maturation improves oocyte quality and embryonic development by enhancing the homeostasis of energy metabolism. Theriogenology 2024; 227:49-59. [PMID: 39013287 DOI: 10.1016/j.theriogenology.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Although supplementation with docosahexaenoic acid (DHA) during porcine oocyte IVM is well-established, the available data are limited due to the lack of consistency. Moreover, to our knowledge, the anti-oxidant effects of DHA on porcine oocytes have not been reported. Hence, this study aimed to examine the effects of DHA supplementation on the regulation of energy metabolism during porcine oocyte maturation to improve oocyte maturation and embryonic development. By supplementing the IVM medium with various DHA concentrations, 25 μM DHA was identified as the optimal concentration which improved intraoocyte glutathione content and enhanced embryonic development after parthenogenesis. Compared to embryos derived from the control group, those derived from SCNT or IVF showed significantly improved blastocyst formation upon DHA supplementation during IVM. In addition, various transcription factors associated with oocyte development and apoptosis in mature oocytes were beneficially regulated in the DHA-treated oocytes. Moreover, DHA improved the AMP-activated protein kinase (AMPK)-regulatory ability of porcine oocytes and ameliorated nuclear maturation and embryonic development, which were decreased by artificially downregulating AMPK. To our knowledge, this is the first study to examine the effects of DHA as an AMPK regulator on oocyte maturation and embryo development in pigs. Furthermore, DHA addition to the IVM medium upregulated the relative expression of genes associated with mitochondrial potential and lipid metabolism. Therefore, the membrane potential of mitochondria (evaluated based on the JC-1 aggregate/JC-1 monomer ratio) and the levels of fatty acids and lipid droplets in matured oocytes increased, resulting in increased ATP synthesis. In conclusion, the DHA treatment of porcine oocytes with 25 μM DHA during IVM enhances the homeostasis of energy metabolism by improving mitochondrial function and lipid metabolism, leading to improved quality of matured oocytes and enhanced embryonic developmental potential of in vitro produced (IVP) embryos. Thus, 25 μM DHA supplementation could serve as a tool for improving the quality of IVP embryos. The study findings provide a basis for further research on improving the production efficiency of cloned animals by securing high-quality matured oocytes and enhancing energy metabolism in mammalian oocytes, including those of pigs.
Collapse
Affiliation(s)
- Yongjin Lee
- Optipharm Inc., 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Joohyun Shim
- Optipharm Inc., 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Nayoung Ko
- Optipharm Inc., 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Hyoung-Joo Kim
- Optipharm Inc., 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Jun-Hyeong Kim
- Optipharm Inc., 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Hyunil Kim
- Optipharm Inc., 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Kimyung Choi
- Optipharm Inc., 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea.
| |
Collapse
|
2
|
Zhu M, Sun Y, Su Y, Guan W, Wang Y, Han J, Wang S, Yang B, Wang Q, Kuang H. Luteolin: A promising multifunctional natural flavonoid for human diseases. Phytother Res 2024; 38:3417-3443. [PMID: 38666435 DOI: 10.1002/ptr.8217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 07/12/2024]
Abstract
Natural products are closely associated with human health. Luteolin (LUT), a flavonoid polyphenolic compound, is widely found in fruits, vegetables, flowers, and herbs. It is noteworthy that LUT exhibits a variety of beneficial pharmacological properties and holds significant potential for clinical applications, particularly in antitumor, anti-convulsion, diabetes control, anti-inflammatory, neuroprotection, anti-oxidation, anti-cardiovascular, and other aspects. The potential mechanism of action has been partially elucidated, including the mediation of NF-κB, toll-like receptor, MAPK, Wnt/β-catenin, PI3K/Akt, AMPK/mTOR, and Nrf-2, among others. The review that aimed to comprehensively consolidate essential information on natural sources, pharmacological effects, therapeutic and preventive potential, as well as potential mechanisms of LUT. The objective is to establish a theoretical basis for the continued development and application of LUT.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yang Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Jianwei Han
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
3
|
Zheng L, Yang L, Guo Z, Yao N, Zhang S, Pu P. Obesity and its impact on female reproductive health: unraveling the connections. Front Endocrinol (Lausanne) 2024; 14:1326546. [PMID: 38264286 PMCID: PMC10803652 DOI: 10.3389/fendo.2023.1326546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
In the modern era, the escalating global prevalence of obesity has profound implications on female reproductive health. Obesity, transcending mere lifestyle choices, has evolved into a complex disorder affecting physiological and metabolic functions. Concurrently, female infertility is rising as a significant global health issue. Obesity, with its extensive systemic effects, is pinpointed as a major disruptor. The convergence of these health challenges reveals a multifaceted scenario: on one hand, obesity directly impacts female reproductive health, particularly in the context of conditions like polycystic ovary syndrome (PCOS) and menstrual disturbances; on the other, the psychosocial consequences of infertility might intensify weight-gain patterns, forming a challenging cycle. Additionally, the economic implications of treating obesity-related infertility are considerable. This review delves into the myriad ways obesity affects female reproductive health, drawing insights from epidemiological, clinical, and molecular studies. It explores the epidemiological relationship between obesity and PCOS, the influence of obesity on menstrual disturbances, and the broader impact of obesity on female infertility. Weight loss, through pharmacological interventions, surgical methods, or lifestyle adjustments, emerges as a promising strategy. Lastly, the efficacy of assisted reproductive technologies, such as IVF, is influenced by obesity, underscoring the importance of an optimal body mass index. The review also highlights the molecular and physiological mechanisms underlying the impact of obesity on female reproductive health, including the disruption of the hypothalamic-pituitary-ovary axis, altered adipokine secretion, and the role of chronic inflammation and oxidative stress.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Breast Surgery, Xingtai City People’s Hospital, Xingtai, Hebei, China
| | - Lixian Yang
- Department of Breast Surgery, Xingtai City People’s Hospital, Xingtai, Hebei, China
| | - Ziru Guo
- Department of Breast Surgery, Xingtai City People’s Hospital, Xingtai, Hebei, China
| | - Nan Yao
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Shiyu Zhang
- Department of Breast Surgery, Xingtai City People’s Hospital, Xingtai, Hebei, China
| | - Pengpeng Pu
- Department of Breast Surgery, Xingtai City People’s Hospital, Xingtai, Hebei, China
| |
Collapse
|
4
|
Jeon SB, Jeong PS, Kim MJ, Kang HG, Song BS, Kim SU, Cho SK, Sim BW. Enhancement of porcine in vitro embryonic development through luteolin-mediated activation of the Nrf2/Keap1 signaling pathway. J Anim Sci Biotechnol 2023; 14:148. [PMID: 38037099 PMCID: PMC10691000 DOI: 10.1186/s40104-023-00947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Oxidative stress, caused by an imbalance in the production and elimination of intracellular reactive oxygen species (ROS), has been recognized for its detrimental effects on mammalian embryonic development. Luteolin (Lut) has been documented for its protective effects against oxidative stress in various studies. However, its specific role in embryonic development remains unexplored. This study aims to investigate the influence of Lut on porcine embryonic development and to elucidate the underlying mechanism. RESULTS After undergoing parthenogenetic activation (PA) or in vitro fertilization, embryos supplemented with 0.5 µmol/L Lut displayed a significant enhancement in cleavage and blastocyst formation rates, with an increase in total cell numbers and a decrease in the apoptosis rate compared to the control. Measurements on D2 and D6 revealed that embryos with Lut supplementation had lower ROS levels and higher glutathione levels compared to the control. Moreover, Lut supplementation significantly augmented mitochondrial content and membrane potential. Intriguingly, activation of the Nrf2/Keap1 signaling pathway was observed in embryos supplemented with Lut, leading to the upregulation of antioxidant-related gene transcription levels. To further validate the relationship between the Nrf2/Keap1 signaling pathway and effects of Lut in porcine embryonic development, we cultured PA embryos in a medium supplemented with brusatol, with or without the inclusion of Lut. The positive effects of Lut on developmental competence were negated by brusatol treatment. CONCLUSIONS Our findings indicate that Lut-mediated activation of the Nrf2/Keap1 signaling pathway contributes to the enhanced production of porcine embryos with high developmental competence, and offers insight into the mechanisms regulating early embryonic development.
Collapse
Affiliation(s)
- Se-Been Jeon
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
- Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Seong-Keun Cho
- Department of Animal Science, Life and Industry Convergence Research Institute (RICRI), College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.
| |
Collapse
|