1
|
Sinegubova MV, Kolesov DE, Vorobiev II, Orlova NA. Increased glycoprotein hormone yield in stably transfected CHO cells using human serum albumin signal peptide for beta-chains. PeerJ 2025; 13:e18908. [PMID: 39963195 PMCID: PMC11831970 DOI: 10.7717/peerj.18908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Heterologous signal peptides enable increasing titers of recombinant proteins in mammalian cell culture. Four human heterodimeric glycoprotein hormones (follicle-stimulating hormone, FSH; luteinizing hormone, LH; chorionic gonadotropin, CG; and thyroid-stimulating hormone, TSH) were expressed in stably transfected CHO cells when varying signal peptides of their β-subunits. The signal peptide of human serum albumin proved to be the most effective for the glycoprotein hormone family. The cell specific productivity was increased for LH (2.5 pg/cell, 4-fold increase), TSH (1.6 pg/cell, 13-fold increase), and CG (1.0 pg/cell, 60%-increase). According to the Western blotting and quantitative PCR data, the productivity increase is associated with an increase in the efficiency of translation and translocation of β-subunits of hormones in the endoplasmic reticulum due to their coupling with the heterologous signal peptides.
Collapse
Affiliation(s)
- Maria V. Sinegubova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Denis E. Kolesov
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan I. Vorobiev
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda A. Orlova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Zhang J, Yang W, Zhang L, Li W, Zhang X, Wang X, Wang T. Novel and effective screening system for recombinant protein production in CHO cells. Sci Rep 2024; 14:20856. [PMID: 39242806 PMCID: PMC11379927 DOI: 10.1038/s41598-024-71915-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
At present, biopharmaceuticals have received extensive attention from the society, among which recombinant proteins have a good growth trend and a large market share. Chinese hamster ovary (CHO) cells are the preferred mammalian system to produce glycosylated recombinant protein drugs. A highly efficient and stable cell screening method needs to be developed to obtain more and useful recombinant proteins. Limited dilution method, cell sorting, and semi-solid medium screening are currently the commonly used cell cloning methods. These methods are time-consuming and labor-intensive, and they have the disadvantage of low clone survival rate. Here, a method based on semi-solid medium was developed to screen out high-yielding and stable cell line within 3 weeks to improve the screening efficiency. The semi-solid medium was combined with an expression vector containing red fluorescent protein (RFP) for early cell line development. In accordance with the fluorescence intensity of RFP, the expression of upstream target gene could be indicated, and the fluorescence intensity was in direct proportion to the expression of upstream target gene. In conclusion, semi-solid medium combined with bicistronic expression vector provides an efficient method for screening stable and highly expressed cell lines.
Collapse
Affiliation(s)
- Junhe Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China.
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Wenwen Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liao Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
| | - Wenqing Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xi Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
| | - Xiaoyin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tianyun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China.
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Sinegubova MV, Kolesov DE, Dayanova LK, Vorobiev II, Orlova NA. Enhancing Human Glycoprotein Hormones Production in CHO Cells Using Heterologous Beta-Chain Signal Peptides. DOKL BIOCHEM BIOPHYS 2024; 514:1-5. [PMID: 38112968 PMCID: PMC11021241 DOI: 10.1134/s1607672923700576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023]
Abstract
We studied the influence of heterologous signal peptides in the β-chains of glycoprotein hormones on the biosynthesis of these hormones in a transiently transfected culture of Chinese hamster ovary cells CHO S. When the natural signal peptides of the β-chains were replaced with the heterologous signal peptide of human serum albumin, cell productivity was increased 2-2.5 times for human luteinizing hormone, human chorionic gonadotropin, and human thyroid-stimulating hormone, but not for human follicle-stimulating hormone. No significant increase in cell productivity was observed for human azurocidin signal peptide and human glycoprotein hormone α-chain signal peptide. The used approach allows quick assessing the effect of heterologous signal peptides on the biosynthesis of heterodimeric proteins of various classes.
Collapse
Affiliation(s)
- M V Sinegubova
- Federal Research Center "Fundamentals of Biotechnology," Russian Academy of Sciences, Moscow, Russia.
| | - D E Kolesov
- Federal Research Center "Fundamentals of Biotechnology," Russian Academy of Sciences, Moscow, Russia
| | - L K Dayanova
- Federal Research Center "Fundamentals of Biotechnology," Russian Academy of Sciences, Moscow, Russia
| | - I I Vorobiev
- Federal Research Center "Fundamentals of Biotechnology," Russian Academy of Sciences, Moscow, Russia
| | - N A Orlova
- Federal Research Center "Fundamentals of Biotechnology," Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|