1
|
Kim ET, Kim YS, Park SJ. Genomic sequence of the non-pathogen Neisseria sp. strain MA1-1 with antibiotic resistance and virulence factors isolated from a head and neck cancer patient. Arch Microbiol 2022; 204:591. [PMID: 36053331 DOI: 10.1007/s00203-022-03212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Recent research has claimed virulence factors or antimicrobial resistance in commensal or non-pathogenic Neisseria spp. This study aimed to isolate and analyze commensal microorganisms related to the genus Neisseria from the oral cavity of a patient with head and neck cancer. We successfully isolated strain MA1-1 and identified its functional gene contents. Although strain MA1-1 was related to Neisseria flava based on 16S rRNA gene sequence similarity, genomic relatedness analysis revealed that strain MA1-1 was closely related to Neisseria mucosa, reported as a commensal Neisseria species. The strain MA1-1 genome harbored genes for microaerobic respiration and the complete core metabolic pathway with few transporters for nutrients. A number of genes have been associated with virulence factors and resistance to various antibiotics. In addition, the comparative genomic analysis showed that most genes identified in the strain MA1-1 were shared with other Neisseria spp. including two well-known pathogens, Neisseria gonorrhoeae and Neisseria meningitidis. This indicates that the gene content of intra-members of the genus Neisseria has been evolutionarily conserved and is stable, with no gene recombination with other microbes in the host. Finally, this study provides more fundamental interpretations for the complete gene sequence of commensal Neisseria spp. and will contribute to advancing public health knowledge.
Collapse
Affiliation(s)
- Eui Tae Kim
- Department of Microbiology and Immunology, Jeju National University College of Medicine, Aran 13-15, Jeju, 63241, Republic of Korea
| | - Young Suk Kim
- Department of Radiation Oncology, Jeju National University College of Medicine, Jeju National University Hospital, Aran 13-15, Jeju, 63241, Republic of Korea
| | - Soo-Je Park
- Department of Biology, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea.
| |
Collapse
|
2
|
Yang Q, Liu T, Wu T, Lei T, Li Y, Wang X. GGDB: A Grameneae genome alignment database of homologous genes hierarchically related to evolutionary events. PLANT PHYSIOLOGY 2022; 190:340-351. [PMID: 35789395 PMCID: PMC9434254 DOI: 10.1093/plphys/kiac297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The genomes of Gramineae plants have been preferentially sequenced owing to their economic value. These genomes are often quite complex, for example harboring many duplicated genes, and are the main source of genetic innovation and often the result of recurrent polyploidization. Deciphering these complex genome structures and linking duplicated genes to specific polyploidization events are important for understanding the biology and evolution of plants. However, efforts have been hampered by the complexity of analyzing these genomes. Here, we analyzed 29 well-assembled and up-to-date Gramineae genome sequences by hierarchically relating duplicated genes in collinear regions to specific polyploidization or speciation events. We separated duplicated genes produced by each event, established lists of paralogous and orthologous genes, and ultimately constructed an online database, GGDB (http://www.grassgenome.com/). Homologous gene lists from each plant and between plants can be displayed, searched, and downloaded from the database. Interactive comparison tools are deployed to demonstrate homology among user-selected plants and to draw genome-scale or local alignment figures and gene-based phylogenetic trees corrected by exploiting gene collinearity. Using these tools and figures, users can easily detect structural changes in genomes and explore the effects of paleo-polyploidy on crop genome structure and function. The GGDB will provide a useful platform for improving our understanding of genome changes and functional innovation in Gramineae plants.
Collapse
Affiliation(s)
- Qihang Yang
- School of Life Science, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tao Liu
- School of Life Science, North China University of Science and Technology, Tangshan, Hebei 063210, China
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tong Wu
- School of Life Science, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tianyu Lei
- School of Life Science, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yuxian Li
- School of Life Science, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | | |
Collapse
|