1
|
Murali R, Yu H, Speth DR, Wu F, Metcalfe KS, Crémière A, Laso-Pèrez R, Malmstrom RR, Goudeau D, Woyke T, Hatzenpichler R, Chadwick GL, Connon SA, Orphan VJ. Physiological potential and evolutionary trajectories of syntrophic sulfate-reducing bacterial partners of anaerobic methanotrophic archaea. PLoS Biol 2023; 21:e3002292. [PMID: 37747940 PMCID: PMC10553843 DOI: 10.1371/journal.pbio.3002292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 10/05/2023] [Accepted: 08/08/2023] [Indexed: 09/27/2023] Open
Abstract
Sulfate-coupled anaerobic oxidation of methane (AOM) is performed by multicellular consortia of anaerobic methanotrophic archaea (ANME) in obligate syntrophic partnership with sulfate-reducing bacteria (SRB). Diverse ANME and SRB clades co-associate but the physiological basis for their adaptation and diversification is not well understood. In this work, we used comparative metagenomics and phylogenetics to investigate the metabolic adaptation among the 4 main syntrophic SRB clades (HotSeep-1, Seep-SRB2, Seep-SRB1a, and Seep-SRB1g) and identified features associated with their syntrophic lifestyle that distinguish them from their non-syntrophic evolutionary neighbors in the phylum Desulfobacterota. We show that the protein complexes involved in direct interspecies electron transfer (DIET) from ANME to the SRB outer membrane are conserved between the syntrophic lineages. In contrast, the proteins involved in electron transfer within the SRB inner membrane differ between clades, indicative of convergent evolution in the adaptation to a syntrophic lifestyle. Our analysis suggests that in most cases, this adaptation likely occurred after the acquisition of the DIET complexes in an ancestral clade and involve horizontal gene transfers within pathways for electron transfer (CbcBA) and biofilm formation (Pel). We also provide evidence for unique adaptations within syntrophic SRB clades, which vary depending on the archaeal partner. Among the most widespread syntrophic SRB, Seep-SRB1a, subclades that specifically partner ANME-2a are missing the cobalamin synthesis pathway, suggestive of nutritional dependency on its partner, while closely related Seep-SRB1a partners of ANME-2c lack nutritional auxotrophies. Our work provides insight into the features associated with DIET-based syntrophy and the adaptation of SRB towards it.
Collapse
Affiliation(s)
- Ranjani Murali
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Unites Stated of America
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| | - Daan R. Speth
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Fabai Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Kyle S. Metcalfe
- Department of Plant and Molecular Biology, University of California, Berkeley. Berkeley, California, United States of America
| | - Antoine Crémière
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Unites Stated of America
| | - Rafael Laso-Pèrez
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Rex R. Malmstrom
- DOE Joint Genome Institute, Department of Energy, Berkeley, California, United States of America
| | - Danielle Goudeau
- DOE Joint Genome Institute, Department of Energy, Berkeley, California, United States of America
| | - Tanja Woyke
- DOE Joint Genome Institute, Department of Energy, Berkeley, California, United States of America
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Grayson L. Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Unites Stated of America
- Department of Plant and Molecular Biology, University of California, Berkeley. Berkeley, California, United States of America
| | - Stephanie A. Connon
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Unites Stated of America
| | - Victoria J. Orphan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Unites Stated of America
| |
Collapse
|
2
|
Cold Seeps on the Passive Northern U.S. Atlantic Margin Host Globally Representative Members of the Seep Microbiome with Locally Dominant Strains of Archaea. Appl Environ Microbiol 2022; 88:e0046822. [PMID: 35607968 DOI: 10.1128/aem.00468-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Marine cold seeps are natural sites of methane emission and harbor distinct microbial communities capable of oxidizing methane. The majority of known cold seeps are on tectonically active continental margins, but recent discoveries have revealed abundant seeps on passive margins as well, including on the U.S. Atlantic Margin (USAM). We sampled in and around four USAM seeps and combined pore water geochemistry measurements with amplicon sequencing of 16S rRNA and mcrA (DNA and RNA) to investigate the microbial communities present, their assembly processes, and how they compare to communities at previously studied sites. We found that the USAM seeps contained communities consistent with the canonical seep microbiome at the class and order levels but differed markedly at the sequence variant level, especially within the anaerobic methanotrophic (ANME) archaea. The ANME populations were highly uneven, with just a few dominant mcrA sequence variants at each seep. Interestingly, the USAM seeps did not form a distinct phylogenetic cluster when compared with other previously described seeps around the world. Consistent with this, we found only a very weak (though statistically significant) distance-decay trend in seep community similarity across a global data set. Ecological assembly indices suggest that the USAM seep communities were assembled primarily deterministically, in contrast to the surrounding nonseep sediments, where stochastic processes dominated. Together, our results suggest that the primary driver of seep microbial community composition is local geochemistry-specifically methane, sulfide, nitrate, acetate, and ammonium concentrations-rather than the geologic context, the composition of nearby seeps, or random events of dispersal. IMPORTANCE Cold seeps are now known to be widespread features of passive continental margins, including the northern U.S. Atlantic Margin (USAM). Methane seepage is expected to intensify at these relatively shallow seeps as bottom waters warm and underlying methane hydrates dissociate. While methanotrophic microbial communities might reduce or prevent methane release, microbial communities on passive margins have rarely been characterized. In this study, we investigated the Bacteria and Archaea at four cold seeps on the northern USAM and found that despite being colocated on the same continental slope, the communities significantly differ by site at the sequence variant level, particularly methane-cycling community members. Differentiation by site was not observed in similarly spaced background sediments, raising interesting questions about the dispersal pathways of cold seep microorganisms. Understanding the genetic makeup of these discrete seafloor ecosystems and how their microbial communities develop will be increasingly important as the climate changes.
Collapse
|
3
|
Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep. Appl Environ Microbiol 2022; 88:e0210921. [PMID: 35604226 DOI: 10.1128/aem.02109-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Syntrophic consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) consume large amounts of methane and serve as the foundational microorganisms in marine methane seeps. Despite their importance in the carbon cycle, research on the physiology of ANME-SRB consortia has been hampered by the slow growth and complex physicochemical environment the consortia inhabit. Here, we report successful sediment-free enrichment of ANME-SRB consortia from deep-sea methane seep sediments in the Santa Monica Basin, California. Anoxic Percoll density gradients and size-selective filtration were used to separate ANME-SRB consortia from sediment particles and single cells to accelerate the cultivation process. Over a 3-year period, a subset of the sediment-associated ANME and SRB lineages, predominantly comprised of ANME-2a/2b ("Candidatus Methanocomedenaceae") and their syntrophic bacterial partners, SEEP-SRB1/2, adapted and grew under defined laboratory conditions. Metagenome-assembled genomes from several enrichments revealed that ANME-2a, SEEP-SRB1, and Methanococcoides in different enrichments from the same inoculum represented distinct species, whereas other coenriched microorganisms were closely related at the species level. This suggests that ANME, SRB, and Methanococcoides are more genetically diverse than other members in methane seeps. Flow cytometry sorting and sequencing of cell aggregates revealed that Methanococcoides, Anaerolineales, and SEEP-SRB1 were overrepresented in multiple ANME-2a cell aggregates relative to the bulk metagenomes, suggesting they were physically associated and possibly interacting. Overall, this study represents a successful case of selective cultivation of anaerobic slow-growing microorganisms from sediments based on their physical characteristics, introducing new opportunities for detailed genomic, physiological, biochemical, and ecological analyses. IMPORTANCE Biological anaerobic oxidation of methane (AOM) coupled with sulfate reduction represents a large methane sink in global ocean sediments. Methane consumption is carried out by syntrophic archaeal-bacterial consortia and fuels a unique ecosystem, yet the interactions in these slow-growing syntrophic consortia and with other associated community members remain poorly understood. The significance of this study is the establishment of sediment-free enrichment cultures of anaerobic methanotrophic archaea and sulfate-reducing bacteria performing AOM with sulfate using selective cultivation approaches based on size, density, and metabolism. By reconstructing microbial genomes and analyzing community composition of the enrichment cultures and cell aggregates, we shed light on the diversity of microorganisms physically associated with AOM consortia beyond the core syntrophic partners. These enrichment cultures offer simplified model systems to extend our understanding of the diversity of microbial interactions within marine methane seeps.
Collapse
|
4
|
Santos VHJMD, Engelmann PDM, Marconatto L, Borge LGDA, Palhano PDL, Augustin AH, Rodrigues LF, Ketzer JMM, Giongo A. Exploratory analysis of the microbial community profile of the municipal solid waste leachate treatment system: A case study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:125-135. [PMID: 35114563 DOI: 10.1016/j.wasman.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/11/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Studies on the degradation dynamics of landfill leachate indicate that the microbial community profile is a valuable and sensitive tool for landfill monitoring programs. Although knowledge about the microbial community can improve the efficiency of leachate treatment systems, little is known about the microbial profile changes that occur throughout the leachate attenuation process. In the present work, an exploratory analysis of the microbial community profile of the MSW leachate treatment system in the municipality of Osório (Brazil) was conducted. In this way, a comprehensive analysis of chemical parameters, isotopic signature and microbial profile data were applied to monitor the changes in the structure of the microbial community throughout the leachate attenuation process and to describe the relationship between the microbial community structure and the attenuation of chemical and isotopic parameters. From data analysis, it was possible to assess the microbial community structure and relate it to the attenuation of chemical and isotopic parameters. Based on massive parallel 16S rRNA gene sequencing, it was possible to observe that each leachate treatment unit has a specific microbial consortium, reflecting the adaptation of different microorganisms to changes in leachate characteristics throughout treatment. From our results, we concluded that the structure of the microbial community is sensitive to the leachate composition and can be applied to study the municipal solid waste management system.
Collapse
Affiliation(s)
- Victor Hugo Jacks Mendes Dos Santos
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul, PUCRS, Materials Engineering and Technology Graduate Program, 6681 Ipiranga Avenue, Building 32, 90619-900 Porto Alegre, Brazil.
| | - Pâmela de Medeiros Engelmann
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul, PUCRS, Materials Engineering and Technology Graduate Program, 6681 Ipiranga Avenue, Building 32, 90619-900 Porto Alegre, Brazil.
| | - Letícia Marconatto
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Luiz Gustavo Dos Anjos Borge
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Pâmela de Lara Palhano
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Adolpho Herbert Augustin
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Luiz Frederico Rodrigues
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - João Marcelo Medina Ketzer
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Linnaeus University, Department of Biology and Environmental Sciences, 391 82 Kalmar, Sweden
| | - Adriana Giongo
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Regional University of Blumenau, Environmental Engineering Graduate Program, Blumenau, Brazil.
| |
Collapse
|
5
|
Chadwick GL, Skennerton CT, Laso-Pérez R, Leu AO, Speth DR, Yu H, Morgan-Lang C, Hatzenpichler R, Goudeau D, Malmstrom R, Brazelton WJ, Woyke T, Hallam SJ, Tyson GW, Wegener G, Boetius A, Orphan VJ. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biol 2022; 20:e3001508. [PMID: 34986141 PMCID: PMC9012536 DOI: 10.1371/journal.pbio.3001508] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/15/2022] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor. A comparative genomics study of anaerobic methanotrophic (ANME) archaea reveals the genetic "parts list" associated with the repeated evolutionary transition between methanogenic and methanotrophic metabolism in the archaeal domain of life.
Collapse
Affiliation(s)
- Grayson L. Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| | - Connor T. Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Rafael Laso-Pérez
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Andy O. Leu
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Daan R. Speth
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Roland Hatzenpichler
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Danielle Goudeau
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Rex Malmstrom
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - William J. Brazelton
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Steven J. Hallam
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
- Department of Microbiology & Immunology, University of British Columbia, British Columbia, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, British Columbia, Canada
| | - Gene W. Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Gunter Wegener
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Antje Boetius
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| |
Collapse
|
6
|
Evolutionary stasis of a deep subsurface microbial lineage. THE ISME JOURNAL 2021; 15:2830-2842. [PMID: 33824425 PMCID: PMC8443664 DOI: 10.1038/s41396-021-00965-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 02/01/2023]
Abstract
Sulfate-reducing bacteria Candidatus Desulforudis audaxviator (CDA) were originally discovered in deep fracture fluids accessed via South African gold mines and have since been found in geographically widespread deep subsurface locations. In order to constrain models for subsurface microbial evolution, we compared CDA genomes from Africa, North America and Eurasia using single cell genomics. Unexpectedly, 126 partial single amplified genomes from the three continents, a complete genome from of an isolate from Eurasia, and metagenome-assembled genomes from Africa and Eurasia shared >99.2% average nucleotide identity, low frequency of SNP's, and near-perfectly conserved prophages and CRISPRs. Our analyses reject sample cross-contamination, recent natural dispersal, and unusually strong purifying selection as likely explanations for these unexpected results. We therefore conclude that the analyzed CDA populations underwent only minimal evolution since their physical separation, potentially as far back as the breakup of Pangea between 165 and 55 Ma ago. High-fidelity DNA replication and repair mechanisms are the most plausible explanation for the highly conserved genome of CDA. CDA presents a stark contrast to the current model organisms in microbial evolutionary studies, which often develop adaptive traits over far shorter periods of time.
Collapse
|
7
|
Cahn JKB, Piel J. Anwendungen von Einzelzellmethoden in der mikrobiellen Naturstoffforschung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201900532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jackson K. B. Cahn
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| | - Jörn Piel
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| |
Collapse
|
8
|
Cahn JKB, Piel J. Opening up the Single-Cell Toolbox for Microbial Natural Products Research. Angew Chem Int Ed Engl 2021; 60:18412-18428. [PMID: 30748086 DOI: 10.1002/anie.201900532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 02/06/2023]
Abstract
The diverse microbes that produce natural products represent an important source of novel therapeutics, drug leads, and scientific tools. However, the vast majority have not been grown in axenic culture and are members of complex communities. While meta-'omic methods such as metagenomics, -transcriptomics, and -proteomics reveal collective molecular features of this "microbial dark matter", the study of individual microbiome members can be challenging. To address these limits, a number of techniques with single-bacterial resolution have been developed in the last decade and a half. While several of these are embraced by microbial ecologists, there has been less use by researchers interested in mining microbes for natural products. In this review, we discuss the available and emerging techniques for targeted single-cell analysis with a particular focus on applications to the discovery and study of natural products.
Collapse
Affiliation(s)
- Jackson K B Cahn
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| | - Jörn Piel
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| |
Collapse
|
9
|
Metcalfe KS, Murali R, Mullin SW, Connon SA, Orphan VJ. Experimentally-validated correlation analysis reveals new anaerobic methane oxidation partnerships with consortium-level heterogeneity in diazotrophy. THE ISME JOURNAL 2021; 15:377-396. [PMID: 33060828 PMCID: PMC8027057 DOI: 10.1038/s41396-020-00757-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
Archaeal anaerobic methanotrophs ("ANME") and sulfate-reducing Deltaproteobacteria ("SRB") form symbiotic multicellular consortia capable of anaerobic methane oxidation (AOM), and in so doing modulate methane flux from marine sediments. The specificity with which ANME associate with particular SRB partners in situ, however, is poorly understood. To characterize partnership specificity in ANME-SRB consortia, we applied the correlation inference technique SparCC to 310 16S rRNA amplicon libraries prepared from Costa Rica seep sediment samples, uncovering a strong positive correlation between ANME-2b and members of a clade of Deltaproteobacteria we termed SEEP-SRB1g. We confirmed this association by examining 16S rRNA diversity in individual ANME-SRB consortia sorted using flow cytometry and by imaging ANME-SRB consortia with fluorescence in situ hybridization (FISH) microscopy using newly-designed probes targeting the SEEP-SRB1g clade. Analysis of genome bins belonging to SEEP-SRB1g revealed the presence of a complete nifHDK operon required for diazotrophy, unusual in published genomes of ANME-associated SRB. Active expression of nifH in SEEP-SRB1g within ANME-2b-SEEP-SRB1g consortia was then demonstrated by microscopy using hybridization chain reaction (HCR-) FISH targeting nifH transcripts and diazotrophic activity was documented by FISH-nanoSIMS experiments. NanoSIMS analysis of ANME-2b-SEEP-SRB1g consortia incubated with a headspace containing CH4 and 15N2 revealed differences in cellular 15N-enrichment between the two partners that varied between individual consortia, with SEEP-SRB1g cells enriched in 15N relative to ANME-2b in one consortium and the opposite pattern observed in others, indicating both ANME-2b and SEEP-SRB1g are capable of nitrogen fixation, but with consortium-specific variation in whether the archaea or bacterial partner is the dominant diazotroph.
Collapse
Affiliation(s)
- Kyle S Metcalfe
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Mail Code 170-25, Pasadena, CA, 91125, USA.
| | - Ranjani Murali
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Mail Code 170-25, Pasadena, CA, 91125, USA
| | - Sean W Mullin
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Mail Code 170-25, Pasadena, CA, 91125, USA
| | - Stephanie A Connon
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Mail Code 170-25, Pasadena, CA, 91125, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Mail Code 170-25, Pasadena, CA, 91125, USA.
| |
Collapse
|
10
|
Walker AM, Leigh MB, Mincks SL. Patterns in Benthic Microbial Community Structure Across Environmental Gradients in the Beaufort Sea Shelf and Slope. Front Microbiol 2021; 12:581124. [PMID: 33584606 PMCID: PMC7876419 DOI: 10.3389/fmicb.2021.581124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
The paradigm of tight pelagic-benthic coupling in the Arctic suggests that current and future fluctuations in sea ice, primary production, and riverine input resulting from global climate change will have major impacts on benthic ecosystems. To understand how these changes will affect benthic ecosystem function, we must characterize diversity, spatial distribution, and community composition for all faunal components. Bacteria and archaea link the biotic and abiotic realms, playing important roles in organic matter (OM) decomposition, biogeochemical cycling, and contaminant degradation, yet sediment microbial communities have rarely been examined in the North American Arctic. Shifts in microbial community structure and composition occur with shifts in OM inputs and contaminant exposure, with implications for shifts in ecological function. Furthermore, the characterization of benthic microbial communities provides a foundation from which to build focused experimental research. We assessed diversity and community structure of benthic prokaryotes in the upper 1 cm of sediments in the southern Beaufort Sea (United States and Canada), and investigated environmental correlates of prokaryotic community structure over a broad spatial scale (spanning 1,229 km) at depths ranging from 17 to 1,200 m. Based on hierarchical clustering, we identified four prokaryotic assemblages from the 85 samples analyzed. Two were largely delineated by the markedly different environmental conditions in shallow shelf vs. upper continental slope sediments. A third assemblage was mainly comprised of operational taxonomic units (OTUs) shared between the shallow shelf and upper slope assemblages. The fourth assemblage corresponded to sediments receiving heavier OM loading, likely resulting in a shallower anoxic layer. These sites may also harbor microbial mats and/or methane seeps. Substructure within these assemblages generally reflected turnover along a longitudinal gradient, which may be related to the quantity and composition of OM deposited to the seafloor; bathymetry and the Mackenzie River were the two major factors influencing prokaryote distribution on this scale. In a broader geographical context, differences in prokaryotic community structure between the Beaufort Sea and Norwegian Arctic suggest that benthic microbes may reflect regional differences in the hydrography, biogeochemistry, and bathymetry of Arctic shelf systems.
Collapse
Affiliation(s)
- Alexis M Walker
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Sarah L Mincks
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, United States
| |
Collapse
|
11
|
Nascimento JR, Easson CG, Jurelevicius DDA, Lopez JV, Bidone ED, Sabadini-Santos E. Microbial community shift under exposure of dredged sediments from a eutrophic bay. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:539. [PMID: 32705349 DOI: 10.1007/s10661-020-08507-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Microbial communities occur in almost every habitat. To evaluate the homeostasis disruption of in situ microbiomes, dredged sediments from Guanabara Bay-Brazil (GB) were mixed with sediments from outside of the bay (D) in three different proportions (25%, 50%, and 75%) which we called GBD25, GBD50, and GBD75. Grain size, TOC, and metals-as indicators of complex contamination-dehydrogenase (DHA) and esterase enzymes (EST)-as indicators of microbial community availability-were determined. Microbial community composition was addressed by amplifying the 16S rRNA gene for DGGE analysis and sequencing using MiSeq platform (Illumina).We applied the quality ratio index (QR) to the GB, D, and every GBD mixture to integrate geochemical parameters with our microbiome data. QR indicated high environmental risk for GB and every GBD mixture, and low risk for D. The community shifted from aerobic to anaerobic profile, consistent with the characteristics of GB. Sample D was dominated by JTB255 marine benthic group, related to low impacted areas. Milano-WF1B-44 was the most representative of GB, often found in anaerobic and sulfur enriched environments. In GBD, the denitrifying sulfur-oxidizing bacteria, Sulfurovum, was the most representative, typically found in suboxic or anoxic niches. The canonical correspondence analysis was able to explain 60% of the community composition variation and exhibit the decrease of environmental quality as the contamination increases. Physiological and taxonomic shifts of the microbial assemblage in sediments were inferred by QR, which was suitable to determine sediment risk. The study produced sufficient information to improve the dredging plan and management.
Collapse
Affiliation(s)
- Juliana R Nascimento
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-150, Brazil.
| | - Cole G Easson
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, 33004, USA
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Diogo de A Jurelevicius
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21944-570, Brazil
| | - Jose V Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, 33004, USA
| | - Edison D Bidone
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-150, Brazil
| | - Elisamara Sabadini-Santos
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-150, Brazil
| |
Collapse
|
12
|
Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H, Tsuda M, Juliarni, Rastelli E, Danovaro R, Corinaldesi C, Kitahashi T, Tasumi E, Nishizawa M, Takai K, Nomaki H, Nunoura T. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME JOURNAL 2019; 14:740-756. [PMID: 31827245 PMCID: PMC7031335 DOI: 10.1038/s41396-019-0564-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 12/28/2022]
Abstract
Hadal trench bottom (>6000 m below sea level) sediments harbor higher microbial cell abundance compared with adjacent abyssal plain sediments. This is supported by the accumulation of sedimentary organic matter (OM), facilitated by trench topography. However, the distribution of benthic microbes in different trench systems has not been well explored yet. Here, we carried out small subunit ribosomal RNA gene tag sequencing for 92 sediment subsamples of seven abyssal and seven hadal sediment cores collected from three trench regions in the northwest Pacific Ocean: the Japan, Izu-Ogasawara, and Mariana Trenches. Tag-sequencing analyses showed specific distribution patterns of several phyla associated with oxygen and nitrate. The community structure was distinct between abyssal and hadal sediments, following geographic locations and factors represented by sediment depth. Co-occurrence network revealed six potential prokaryotic consortia that covaried across regions. Our results further support that the OM cycle is driven by hadal currents and/or rapid burial shapes microbial community structures at trench bottom sites, in addition to vertical deposition from the surface ocean. Our trans-trench analysis highlights intra- and inter-trench distributions of microbial assemblages and geochemistry in surface seafloor sediments, providing novel insights into ultradeep-sea microbial ecology, one of the last frontiers on our planet.
Collapse
Affiliation(s)
- Satoshi Hiraoka
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.
| | - Miho Hirai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Yohei Matsui
- Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Akiko Makabe
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Hiroaki Minegishi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.,Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, 350-8585, Saitama, Japan
| | - Miwako Tsuda
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Juliarni
- Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Eugenio Rastelli
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| | - Roberto Danovaro
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy.,Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Tomo Kitahashi
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Eiji Tasumi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Manabu Nishizawa
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Hidetaka Nomaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.
| |
Collapse
|
13
|
Pelikan C, Jaussi M, Wasmund K, Seidenkrantz MS, Pearce C, Kuzyk ZZA, Herbold CW, Røy H, Kjeldsen KU, Loy A. Glacial Runoff Promotes Deep Burial of Sulfur Cycling-Associated Microorganisms in Marine Sediments. Front Microbiol 2019; 10:2558. [PMID: 31787951 PMCID: PMC6853847 DOI: 10.3389/fmicb.2019.02558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Marine fjords with active glacier outlets are hot spots for organic matter burial in the sediments and subsequent microbial mineralization. Here, we investigated controls on microbial community assembly in sub-arctic glacier-influenced (GI) and non-glacier-influenced (NGI) marine sediments in the Godthåbsfjord region, south-western Greenland. We used a correlative approach integrating 16S rRNA gene and dissimilatory sulfite reductase (dsrB) amplicon sequence data over six meters of depth with biogeochemistry, sulfur-cycling activities, and sediment ages. GI sediments were characterized by comparably high sedimentation rates and had "young" sediment ages of <500 years even at 6 m sediment depth. In contrast, NGI stations reached ages of approximately 10,000 years at these depths. Sediment age-depth relationships, sulfate reduction rates (SRR), and C/N ratios were strongly correlated with differences in microbial community composition between GI and NGI sediments, indicating that age and diagenetic state were key drivers of microbial community assembly in subsurface sediments. Similar bacterial and archaeal communities were present in the surface sediments of all stations, whereas only in GI sediments were many surface taxa also abundant through the whole sediment core. The relative abundance of these taxa, including diverse Desulfobacteraceae members, correlated positively with SRRs, indicating their active contributions to sulfur-cycling processes. In contrast, other surface community members, such as Desulfatiglans, Atribacteria, and Chloroflexi, survived the slow sediment burial at NGI stations and dominated in the deepest sediment layers. These taxa are typical for the energy-limited marine deep biosphere and their relative abundances correlated positively with sediment age. In conclusion, our data suggests that high rates of sediment accumulation caused by glacier runoff and associated changes in biogeochemistry, promote persistence of sulfur-cycling activity and burial of a larger fraction of the surface microbial community into the deep subsurface.
Collapse
Affiliation(s)
- Claus Pelikan
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Marion Jaussi
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Marit-Solveig Seidenkrantz
- Palaeoceanography and Palaeoclimate Group, Arctic Research Centre, and iClimate Interdisciplinary Centre for Climate Change, Department of Geoscience, Aarhus University, Aarhus, Denmark
| | - Christof Pearce
- Palaeoceanography and Palaeoclimate Group, Arctic Research Centre, and iClimate Interdisciplinary Centre for Climate Change, Department of Geoscience, Aarhus University, Aarhus, Denmark
| | - Zou Zou Anna Kuzyk
- Department of Geological Sciences, Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB, Canada
| | - Craig W. Herbold
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Hans Røy
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kasper Urup Kjeldsen
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| |
Collapse
|
14
|
D'Angeli IM, Ghezzi D, Leuko S, Firrincieli A, Parise M, Fiorucci A, Vigna B, Addesso R, Baldantoni D, Carbone C, Miller AZ, Jurado V, Saiz-Jimenez C, De Waele J, Cappelletti M. Geomicrobiology of a seawater-influenced active sulfuric acid cave. PLoS One 2019; 14:e0220706. [PMID: 31393920 PMCID: PMC6687129 DOI: 10.1371/journal.pone.0220706] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Fetida Cave is an active sulfuric acid cave influenced by seawater, showing abundant microbial communities that organize themselves under three main different morphologies: water filaments, vermiculations and moonmilk deposits. These biofilms/deposits have different cave distribution, pH, macro- and microelement and mineralogical composition, carbon and nitrogen content. In particular, water filaments and vermiculations had circumneutral and slightly acidic pH, respectively, both had abundant organic carbon and high microbial diversity. They were rich in macro- and microelements, deriving from mineral dissolution, and, in the case of water filaments, from seawater composition. Vermiculations had different color, partly associated with their mineralogy, and unusual minerals probably due to trapping capacities. Moonmilk was composed of gypsum, poor in organic matter, had an extremely low pH (0-1) and low microbial diversity. Based on 16S rRNA gene analysis, the microbial composition of the biofilms/deposits included autotrophic taxa associated with sulfur and nitrogen cycles and biomineralization processes. In particular, water filaments communities were characterized by bacterial taxa involved in sulfur oxidation and reduction in aquatic, aphotic, microaerophilic/anoxic environments (Campylobacterales, Thiotrichales, Arenicellales, Desulfobacterales, Desulforomonadales) and in chemolithotrophy in marine habitats (Oceanospirillales, Chromatiales). Their biodiversity was linked to the morphology of the water filaments and their collection site. Microbial communities within vermiculations were partly related to their color and showed high abundance of unclassified Betaproteobacteria and sulfur-oxidizing Hydrogenophilales (including Sulfuriferula), and Acidiferrobacterales (including Sulfurifustis), sulfur-reducing Desulfurellales, and ammonia-oxidizing Planctomycetes and Nitrospirae. The microbial community associated with gypsum moonmilk showed the strong dominance (>60%) of the archaeal genus Thermoplasma and lower abundance of chemolithotrophic Acidithiobacillus, metal-oxidizing Metallibacterium, Sulfobacillus, and Acidibacillus. This study describes the geomicrobiology of water filaments, vermiculations and gypsum moonmilk from Fetida Cave, providing insights into the microbial taxa that characterize each morphology and contribute to biogeochemical cycles and speleogenesis of this peculiar seawater-influenced sulfuric acid cave.
Collapse
Affiliation(s)
- Ilenia M D'Angeli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Daniele Ghezzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefan Leuko
- DLR Institute of Aerospace Medicine, Radiation Biology, Köln, Germany
| | - Andrea Firrincieli
- School of Environmental and Forest Science, University of Washington, Seattle, WA, United States of America
| | - Mario Parise
- Department of Geological and Environmental Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Fiorucci
- Department of Environment, Land and Infrastructure Engineering, Polytechnic University of Turin, Torino, Italy
| | - Bartolomeo Vigna
- Department of Environment, Land and Infrastructure Engineering, Polytechnic University of Turin, Torino, Italy
| | - Rosangela Addesso
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Fisciano (SA), Italy
| | - Daniela Baldantoni
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Fisciano (SA), Italy
| | - Cristina Carbone
- DISTAV, Department of Geological, Environmental and Biological Sciences, University of Genoa, Genoa, Italy
| | | | - Valme Jurado
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, Sevilla, Spain
| | | | - Jo De Waele
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Gründger F, Carrier V, Svenning MM, Panieri G, Vonnahme TR, Klasek S, Niemann H. Methane-fuelled biofilms predominantly composed of methanotrophic ANME-1 in Arctic gas hydrate-related sediments. Sci Rep 2019; 9:9725. [PMID: 31278352 PMCID: PMC6611871 DOI: 10.1038/s41598-019-46209-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/25/2019] [Indexed: 11/21/2022] Open
Abstract
Sedimentary biofilms comprising microbial communities mediating the anaerobic oxidation of methane are rare. Here, we describe two biofilm communities discovered in sediment cores recovered from Arctic cold seep sites (gas hydrate pingos) in the north-western Barents Sea, characterized by steady methane fluxes. We found macroscopically visible biofilms in pockets in the sediment matrix at the depth of the sulphate-methane-transition zone. 16S rRNA gene surveys revealed that the microbial community in one of the two biofilms comprised exclusively of putative anaerobic methanotrophic archaea of which ANME-1 was the sole archaeal taxon. The bacterial community consisted of relatives of sulphate-reducing bacteria (SRB) belonging to uncultured Desulfobacteraceae clustering into SEEP-SRB1 (i.e. the typical SRB associated to ANME-1), and members of the atribacterial JS1 clade. Confocal laser scanning microscopy demonstrates that this biofilm is composed of multicellular strands and patches of ANME-1 that are loosely associated with SRB cells, but not tightly connected in aggregates. Our discovery of methanotrophic biofilms in sediment pockets closely associated with methane seeps constitutes a hitherto overlooked and potentially widespread sink for methane and sulphate in marine sediments.
Collapse
Affiliation(s)
- Friederike Gründger
- CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Vincent Carrier
- CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mette M Svenning
- CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Giuliana Panieri
- CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Tobias R Vonnahme
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Scott Klasek
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR, USA
| | - Helge Niemann
- CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Marine Microbiology & Biogeochemistry, and Utrecht University, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, The Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Hatam I, Petticrew EL, French TD, Owens PN, Laval B, Baldwin SA. The bacterial community of Quesnel Lake sediments impacted by a catastrophic mine tailings spill differ in composition from those at undisturbed locations - two years post-spill. Sci Rep 2019; 9:2705. [PMID: 30804448 PMCID: PMC6389986 DOI: 10.1038/s41598-019-38909-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/31/2018] [Indexed: 11/17/2022] Open
Abstract
The West Basin of Quesnel Lake (British Columbia, Canada) suffered a catastrophic disturbance event in August 2014 when mine tailings and scoured natural material were deposited into the lake’s West Basin due to an impoundment failure at the adjacent Mount Polley copper-gold mine. The deposit covered a significant portion of the West Basin floor with a thick layer of material. Since lake sediments host bacterial communities that play key roles in the geochemical cycling in lacustrine environments, it is important to understand which groups inhabit the newly deposited material and what this implies for the ecological function of the West Basin. Here we report a study conducted two years post-spill, comparing the bacterial communities from sediments of both disturbed and undisturbed sites. Our results show that sediments from disturbed sites differed in physical and chemical properties than those in undisturbed sites (e.g. higher pH, particle size and Cu concentration). Furthermore, bacterial communities from the disturbed sites appeared to be legacy communities from the tailings impoundment, with metabolic potential revolving mainly around the cycling of S and metals, whereas the ones from the undisturbed sites were associated with the cycling of N.
Collapse
Affiliation(s)
- I Hatam
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada.
| | - E L Petticrew
- Geography Program and Quesnel River Research Centre, University of Northern British Columbia, Prince George, British Columbia, V2N4Z9, Canada
| | - T D French
- Geography Program and Quesnel River Research Centre, University of Northern British Columbia, Prince George, British Columbia, V2N4Z9, Canada.,Environmental Science Program and Quesnel River Research Centre, University of Northern British Columbia, Prince George, British Columbia, V2N4Z9, Canada
| | - P N Owens
- Environmental Science Program and Quesnel River Research Centre, University of Northern British Columbia, Prince George, British Columbia, V2N4Z9, Canada
| | - B Laval
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada
| | - S A Baldwin
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada.
| |
Collapse
|
17
|
Yu H, Susanti D, McGlynn SE, Skennerton CT, Chourey K, Iyer R, Scheller S, Tavormina PL, Hettich RL, Mukhopadhyay B, Orphan VJ. Comparative Genomics and Proteomic Analysis of Assimilatory Sulfate Reduction Pathways in Anaerobic Methanotrophic Archaea. Front Microbiol 2018; 9:2917. [PMID: 30559729 PMCID: PMC6286981 DOI: 10.3389/fmicb.2018.02917] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023] Open
Abstract
Sulfate is the predominant electron acceptor for anaerobic oxidation of methane (AOM) in marine sediments. This process is carried out by a syntrophic consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB) through an energy conservation mechanism that is still poorly understood. It was previously hypothesized that ANME alone could couple methane oxidation to dissimilatory sulfate reduction, but a genetic and biochemical basis for this proposal has not been identified. Using comparative genomic and phylogenetic analyses, we found the genetic capacity in ANME and related methanogenic archaea for sulfate reduction, including sulfate adenylyltransferase, APS kinase, APS/PAPS reductase and two different sulfite reductases. Based on characterized homologs and the lack of associated energy conserving complexes, the sulfate reduction pathways in ANME are likely used for assimilation but not dissimilation of sulfate. Environmental metaproteomic analysis confirmed the expression of 6 proteins in the sulfate assimilation pathway of ANME. The highest expressed proteins related to sulfate assimilation were two sulfite reductases, namely assimilatory-type low-molecular-weight sulfite reductase (alSir) and a divergent group of coenzyme F420-dependent sulfite reductase (Group II Fsr). In methane seep sediment microcosm experiments, however, sulfite and zero-valent sulfur amendments were inhibitory to ANME-2a/2c while growth in their syntrophic SRB partner was not observed. Combined with our genomic and metaproteomic results, the passage of sulfur species by ANME as metabolic intermediates for their SRB partners is unlikely. Instead, our findings point to a possible niche for ANME to assimilate inorganic sulfur compounds more oxidized than sulfide in anoxic marine environments.
Collapse
Affiliation(s)
- Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States.,Ronald and Maxine Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, CA, United States
| | - Dwi Susanti
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Shawn E McGlynn
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Connor T Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ramsunder Iyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Silvan Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Patricia L Tavormina
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Biswarup Mukhopadhyay
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States.,Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
18
|
Saad S, Bhatnagar S, Tegetmeyer HE, Geelhoed JS, Strous M, Ruff SE. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate-reducing benthic microbial populations. Environ Microbiol 2017; 19:4866-4881. [PMID: 28836729 PMCID: PMC5763382 DOI: 10.1111/1462-2920.13895] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 12/01/2022]
Abstract
For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate‐reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate‐ and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24‐12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ‘USabulitectum silens’ and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate‐reducing microbial communities and their adaptation to a dynamic environment.
Collapse
Affiliation(s)
- Sainab Saad
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Srijak Bhatnagar
- UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - Halina E Tegetmeyer
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,Institute for Genome Research and Systems Biology, Center for Biotechnology, University of Bielefeld, Bielefeld, Germany
| | - Jeanine S Geelhoed
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,Department of Ecosystem Studies, NIOZ Royal Netherlands Institute for Sea Research, Yerseke, The Netherlands
| | - Marc Strous
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,Institute for Genome Research and Systems Biology, Center for Biotechnology, University of Bielefeld, Bielefeld, Germany.,Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - S Emil Ruff
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,Department of Geoscience, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Affiliation(s)
- Derek R. Lovley
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
20
|
Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia. Proc Natl Acad Sci U S A 2016; 113:E4069-78. [PMID: 27357680 DOI: 10.1073/pnas.1603757113] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probe the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of >16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought.
Collapse
|
21
|
Marlow JJ, Skennerton CT, Li Z, Chourey K, Hettich RL, Pan C, Orphan VJ. Proteomic Stable Isotope Probing Reveals Biosynthesis Dynamics of Slow Growing Methane Based Microbial Communities. Front Microbiol 2016; 7:563. [PMID: 27199908 PMCID: PMC4850331 DOI: 10.3389/fmicb.2016.00563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/04/2016] [Indexed: 01/02/2023] Open
Abstract
Marine methane seep habitats represent an important control on the global flux of methane. Nucleotide-based meta-omics studies outline community-wide metabolic potential, but expression patterns of environmentally relevant proteins are poorly characterized. Proteomic stable isotope probing (proteomic SIP) provides additional information by characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities, offering enhanced detection through system-wide product integration. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 unique proteins were identified, 11% of which were 15N-labeled. Consistent with the dominant anaerobic oxidation of methane (AOM) activity commonly observed in anoxic seep sediments, proteins associated with sulfate reduction and reverse methanogenesis—including the ANME-2 associated methylenetetrahydromethanopterin reductase (Mer)—were all observed to be actively synthesized (15N-enriched). Conversely, proteins affiliated with putative aerobic sulfur-oxidizing epsilon- and gammaproteobacteria showed a marked decrease over time in our anoxic sediment incubations. The abundance and phylogenetic range of 15N-enriched methyl-coenzyme M reductase (Mcr) orthologs, many of which exhibited novel post-translational modifications, suggests that seep sediments provide niches for multiple organisms performing analogous metabolisms. In addition, 26 proteins of unknown function were consistently detected and actively expressed under conditions supporting AOM, suggesting that they play important roles in methane seep ecosystems. Stable isotope probing in environmental proteomics experiments provides a mechanism to determine protein durability and evaluate lineage-specific responses in complex microbial communities placed under environmentally relevant conditions. Our work here demonstrates the active synthesis of a metabolically specific minority of enzymes, revealing the surprising longevity of most proteins over the course of an extended incubation experiment in an established, slow-growing, methane-impacted environmental system.
Collapse
Affiliation(s)
- Jeffrey J Marlow
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Connor T Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Zhou Li
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Chongle Pan
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|