1
|
Woodward HN, Aubier P, Sena MVAD, Cubo J. Evaluating extinct pseudosuchian body mass estimates using a femur volume-based model. Anat Rec (Hoboken) 2024. [PMID: 38634509 DOI: 10.1002/ar.25452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
The clade Pseudosuchia appeared 250 million years ago. The exclusively semi-aquatic Crocodylia, which includes crocodiles, alligators, caimans, and gharials is the only surviving subgroup. Investigating Crocodylia biology is pivotal for inferring traits of extinct pseudosuchians. Alligator femur length is widely used for modeling pseudosuchian body mass, but the regression is influenced by sex and captivity status, leading to potential accuracy problems. An alternative model results from the correlation between alligator femur volume and body mass, which is unaffected by those covariates. Here, an alligator femur volume-based regression is applied to estimate the masses of non-crocodylian pseudosuchians, encompassing goniopholids, dyrosaurs, notosuchians, and thalattosuchians. For each, femur volume as the predictor yields lower body masses than does femur length. Morphological resemblances to existing crocodylians support the inference that extinct goniopholids and dyrosaurs were semi-aquatic. Therefore, body masses predicted from femur length and volume should be reasonable, although larger body masses obtained from femur length may reflect sensitivity to sex or environmental factors. Fully terrestrial notosuchians had proportionately longer femora for their body sizes compared to semi-aquatic crocodylians, suggesting that the higher body masses predicted from alligator femur length are overestimates. Fully aquatic thalattosuchians, skeletally adapted for buoyancy and with reduced reliance on the femur for locomotion, pose challenges for both femur length and volume-based models. The results of this study advocate for the use of femur volume to predict body mass, particularly for semi-aquatic and terrestrial pseudosuchians, and encourage further exploration of volumetric models as body size predictors for extinct vertebrates.
Collapse
Affiliation(s)
- Holly N Woodward
- Department of Anatomy and Cell Biology, Oklahoma State University - Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Paul Aubier
- Muséum national d'Histoire naturelle, CNRS, Centre de Recherche en Paléontologie, Sorbonne Université, Paris, France
| | | | - Jorge Cubo
- Muséum national d'Histoire naturelle, CNRS, Centre de Recherche en Paléontologie, Sorbonne Université, Paris, France
| |
Collapse
|
2
|
Dos Santos DM, de Carvalho JC, de Oliveira CEM, de Andrade MB, Santucci RM. Cranial and postcranial anatomy of a juvenile baurusuchid (Notosuchia, Crocodylomorpha) and the taxonomical implications of ontogeny. Anat Rec (Hoboken) 2024. [PMID: 38429867 DOI: 10.1002/ar.25419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
Baurusuchidae comprises a clade of top-tier terrestrial predators and are among the most abundant crocodyliforms found in the Adamantina Formation, Bauru Basin, Brazil (Campanian-Maastrichtian). Here, we provide a detailed description of the cranial and postcranial osteology and myology of the most complete juvenile baurusuchid found to date. Although the preservation of juvenile individuals is somewhat rare, previously reported occurrences of baurusuchid egg clutches, a yearling individual, and larger, but skeletally immature specimens, comprise a unique opportunity to track anatomical changes throughout their ontogenetic series. Its cranial anatomy was resolved with the aid of a three-dimensional model generated by the acquisition of computed tomography data, and its inferred adductor mandibular musculature was compared to that of mature specimens in order to assess possible ontogenetic shifts. A subsequent phylogenetic analysis included the scoring of Gondwanasuchus scabrosus, the smallest baurusuchid species known to date, to evaluate its phylogenetic relations relative to a known juvenile. We find considerable differences between juveniles and adults concerning skull ornamentation and muscle development, which might indicate ontogenetic niche partitioning, and also anatomical and phylogenetic evidence that G. scabrosus corresponds to a young semaphoront lacking mature cranial features.
Collapse
Affiliation(s)
- Daniel Martins Dos Santos
- Zoology Graduate Program, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | | | | | | | | |
Collapse
|
3
|
Pochat‐Cottilloux Y, Rinder N, Perrichon G, Adrien J, Amiot R, Hua S, Martin JE. The neuroanatomy and pneumaticity of Hamadasuchus (Crocodylomorpha, Peirosauridae) from the Cretaceous of Morocco and its paleoecological significance for altirostral forms. J Anat 2023; 243:374-393. [PMID: 37309776 PMCID: PMC10439374 DOI: 10.1111/joa.13887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/14/2023] Open
Abstract
We describe the endocranial structures of Hamadasuchus, a peirosaurid crocodylomorph from the late Albian-Cenomanian Kem Kem group of Morocco. The cranial endocast, associated nerves and arteries, endosseous labyrinths, and cranial pneumatization, as well as the bones of the braincase of a new specimen, are reconstructed and compared with extant and fossil crocodylomorphs, which represent different lifestyles. Cranial bones of this specimen are identified as belonging to Hamadasuchus, with close affinities with Rukwasuchus yajabalijekundu, another peirosaurid from the 'middle' Cretaceous of Tanzania. The endocranial structures are comparable to those of R. yajabalijekundu but also to baurusuchids and sebecids (sebecosuchians). Paleobiological traits of Hamadasuchus, such as alert head posture, ecology, and behavior are explored for the first time, using quantitative metrics. The expanded but narrow semi-circular canals and enlarged pneumatization of the skull of Hamadasuchus are linked to a terrestrial lifestyle. Continuing work on the neuroanatomy of supposedly terrestrial crocodylomorphs needs to be broadened to other groups and will allow to characterize whether some internal structures are affected by the lifestyle of these organisms.
Collapse
Affiliation(s)
| | - Nicolas Rinder
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL‐TPEVilleurbanneFrance
| | | | - Jérôme Adrien
- Laboratoire MatériauxIngénierie et Science, Institut National des Sciences Appliquées de LyonVilleurbanneFrance
| | - Romain Amiot
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL‐TPEVilleurbanneFrance
| | | | | |
Collapse
|
4
|
de Araújo Sena MV, Cubo J. Inferring the lifestyles of extinct Crocodyliformes using osteoderm ornamentation. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:41. [PMID: 37548714 DOI: 10.1007/s00114-023-01871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Osteoderms are bony plates formed within the dermis of diverse vertebrate groups. They are present in all crocodylomorphs but Metriorhynchidae. Most of them show typical bone ornamentation consisting of pits and ridges on their outer surface. The most widely discussed functional hypothesis suggests that the ornamentation of osteoderms influences heat exchange with the environment through the adjacent vascular network, facilitating the absorption of solar radiation. This process allows semiaquatic crocodiles to compensate for heat loss resulting from the high thermal conductivity of surrounding water. In order to test this assertion, we conducted a phylogenetic logistic regression analysis to evaluate the relationship between osteoderm relative area of pits (RAP) and lifestyle (terrestrial versus aquatic) in a sample of crocodyliforms. Our results revealed that lifestyle is significantly explained by RAP: the lower the degree of ornamentation (RAP), the higher the probability of a terrestrial lifestyle. We used this model to infer the lifestyle of two extinct taxa, Peirosaurus torminni and Microsuchus schilleri. We concluded that terrestrial notosuchians may have lost osteoderm ornamentation due to the lower thermal conductivity of air and reduced heat loss in a terrestrial environment compared to what happens in water. Among these notosuchians, we hypothesize that large terrestrial baurusuchids maintained a stable body temperature due to thermal inertia, whereas small notosuchians took advantage of the early morning sun exposure to warm up and stayed in terrestrial burrows during periods of intense solar radiation. Finally, unlike the almost motionless behavior of freshwater crocodiles, fully marine Metriorhynchidae probably lost osteoderms because they constantly swim, generating heat by muscular contraction, so osteoderms with a thermoregulatory function for heat absorption were no longer positively selected.
Collapse
Affiliation(s)
- Mariana Valéria de Araújo Sena
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, Centre de Recherche en Paléontologie-Paris (CR2P, UMR 7207), 4 Place Jussieu, 104, 75005, Paris, BC, France.
- Museu de Paleontologia Plácido Cidade Nuvens, Rua Plácido Cidade Nuvens, 326, Santana do Cariri, Ceará, 63190-000, Brazil.
| | - Jorge Cubo
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, Centre de Recherche en Paléontologie-Paris (CR2P, UMR 7207), 4 Place Jussieu, 104, 75005, Paris, BC, France
| |
Collapse
|
5
|
Sena MVDA, Marinho TDS, Montefeltro FC, Langer MC, Fachini TS, Nava WR, Pinheiro AEP, de Araújo EV, Aubier P, de Andrade RCLP, Sayão JM, de Oliveira GR, Cubo J. Osteohistological characterization of notosuchian osteoderms: Evidence for an overlying thick leathery layer of skin. J Morphol 2023; 284:e21536. [PMID: 36394285 PMCID: PMC10107732 DOI: 10.1002/jmor.21536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Osteoderms are mineralized structures embedded in the dermis, known for nonavian archosaurs, squamates, xenarthrans, and amphibians. Herein, we compared the osteoderm histology of Brazilian Notosuchia of Cretaceous age using three neosuchians for comparative purposes. Microanatomical analyses showed that most of them present a diploe structure similar to those of other pseudosuchians, lizards, and turtles. This structure contains two cortices (the external cortex composed of an outer and an inner layers, and the basal cortex) and a core in-between them. Notosuchian osteoderms show high bone compactness (>0.85) with varying degrees of cancellous bone in the core. The neosuchian Guarinisuchus shows the lowest bone compactness with a well-developed cancellous layer. From an ontogenetic perspective, most tissues are formed through periosteal ossification, although the mineralized tissues observed in baurusuchid LPRP/USP 0634 suggest a late metaplastic development. Histology suggests that the ossification center of notosuchian osteoderm is located at the keel. Interestingly, we identified Sharpey's fibers running perpendicularly to the outer layer of the external cortex in Armadillosuchus arrudai, Itasuchus jesuinoi, and Baurusuchidae (LPRP/USP 0642). This feature indicates a tight attachment within the dermis, and it is evidence for the presence of an overlying thick leathery layer of skin over these osteoderms. These data allow a better understanding of the osteohistological structure of crocodylomorph dermal bones, and highlight their structural diversity. We suggest that the vascular canals present in some sampled osteoderms connecting the inner layer of the external cortex and the core with the external surface may increase osteoderm surface and the capacity of heat transfer in terrestrial notosuchians.
Collapse
Affiliation(s)
- Mariana Valéria de Araújo Sena
- Centre de Recherche en Paléontologie Paris (CR2P, UMR 7207), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, Paris, France.,Centro de Ciências Biológicas e da Saúde, Laboratório de Paleontologia da URCA, Universidade Regional do Cariri, Rua Carolino Sucupira-Pimenta, Crato, Ceará, Brazil
| | - Thiago da Silva Marinho
- Centro de Pesquisas Paleontológicas "Llewellyn Ivor Price", Complexo Cultural e Científico Peirópolis, Pró-Reitoria de Extensão Universitária, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.,Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Felipe Chinaglia Montefeltro
- Departamento de Biologia e Zootecnia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, São Paulo, Brazil
| | - Max Cardoso Langer
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Laboratório de Paleontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thiago Schineider Fachini
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Laboratório de Paleontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - William Roberto Nava
- Museu de Paleontologia de Marília, Prefeitura Municipal de Marília, Marília, São Paulo, Brazil
| | | | - Esaú Victor de Araújo
- Museu Nacional do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paul Aubier
- Centre de Recherche en Paléontologie Paris (CR2P, UMR 7207), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, Paris, France
| | - Rafael César Lima Pedroso de Andrade
- Centro de Ciências Biológicas e da Saúde, Laboratório de Paleontologia da URCA, Universidade Regional do Cariri, Rua Carolino Sucupira-Pimenta, Crato, Ceará, Brazil
| | - Juliana Manso Sayão
- Museu Nacional do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Ribeiro de Oliveira
- Laboratório de Paleontologia e Sistemática (LAPASI), Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Jorge Cubo
- Centre de Recherche en Paléontologie Paris (CR2P, UMR 7207), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
6
|
Ristevski J. Neuroanatomy of the mekosuchine crocodylian Trilophosuchus rackhami Willis, 1993. J Anat 2022; 241:981-1013. [PMID: 36037801 PMCID: PMC9482699 DOI: 10.1111/joa.13732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/03/2022] Open
Abstract
Although our knowledge on crocodylomorph palaeoneurology has experienced considerable growth in recent years, the neuroanatomy of many crocodylomorph taxa has yet to be studied. This is true for Australian taxa, where thus far only two crocodylian crocodylomorphs have had aspects of their neuroanatomy explored. Here, the neuroanatomy of the Australian mekosuchine crocodylian Trilophosuchus rackhami is described for the first time, which significantly increases our understanding on the palaeoneurology of Australian crocodylians. The palaeoneurological description is based on the taxon's holotype specimen (QMF16856), which was subjected to a μCT scan. Because of the exceptional preservation of QMF16856, most neuroanatomical elements could be digitally reconstructed and described in detail. Therefore, the palaeoneurological assessment presented here is hitherto the most in‐depth study of this kind for an extinct Australian crocodylomorph. Trilophosuchus rackhami has a brain endocast with a distinctive morphology that is characterized by an acute dural peak over the hindbrain region. While the overall morphology of the brain endocast is unique to T. rackhami, it does share certain similarities with the notosuchian crocodyliforms Araripesuchus wegeneri and Sebecus icaeorhinus. The endosseous labyrinth displays a morphology that is typical for crocodylians, although a stand‐out feature is the unusually tall common crus. Indeed, the common crus of T. rackhami has one of the greatest height ratios among crocodylomorphs with currently known endosseous labyrinths. The paratympanic pneumatic system of T. rackhami is greatly developed and most similar to those of the extant crocodylians Osteolaemus tetraspis and Paleosuchus palpebrosus. The observations on the neuroanatomy of T. rackhami are also discussed in the context of Crocodylomorpha. The comparative palaeoneurology reinforces previous evaluations that the neuroanatomy of crocodylomorphs is complex and diverse among species, and T. rackhami has a peculiar neuromorphology, particularly among eusuchian crocodyliforms.
Collapse
Affiliation(s)
- Jorgo Ristevski
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Pochat-Cottilloux Y, Martin JE, Jouve S, Perrichon G, Adrien J, Salaviale C, de Muizon C, Cespedes R, Amiot R. The neuroanatomy of Zulmasuchus querejazus (Crocodylomorpha, Sebecidae) and its implications for the paleoecology of sebecosuchians. Anat Rec (Hoboken) 2021; 305:2708-2728. [PMID: 34825786 DOI: 10.1002/ar.24826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 01/14/2023]
Abstract
The endocranial structures of the sebecid crocodylomorph Zulmasuchus querejazus (MHNC 6672) from the Lower Paleocene of Bolivia are described in this article. Using computed tomography scanning, the cranial endocast, associated nerves and arteries, endosseous labyrinths, and cranial pneumatization are reconstructed and compared with those of extant and fossil crocodylomorphs, representative of different ecomorphological adaptations. Z. querejazus exhibits an unusual flexure of the brain, pericerebral spines, semicircular canals with a narrow diameter, as well as enlarged pharyngotympanic sinuses. First, those structures allow to estimate the alert head posture and hearing capabilities of Zulmasuchus. Then, functional comparisons are proposed between this purportedly terrestrial taxon, semi-aquatic, and aquatic forms (extant crocodylians, thalattosuchians, and dyrosaurids). The narrow diameter of the semicircular canals but expanded morphology of the endosseous labyrinths and the enlarged pneumatization of the skull compared to other forms indeed tend to indicate a terrestrial lifestyle for Zulmasuchus. Our results highlight the need to gather new data, especially from altirostral forms in order to further our understanding of the evolution of endocranial structures in crocodylomorphs with different ecomorphological adaptations.
Collapse
Affiliation(s)
| | - Jeremy E Martin
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, Villeurbanne, France
| | - Stéphane Jouve
- Centre de Recherche en Paléontologie - Paris (CR2P), Sorbonne Université, Paris, France
| | | | - Jérome Adrien
- Laboratoire Matériaux, Ingénierie et Science, Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Céline Salaviale
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, Villeurbanne, France
| | - Christian de Muizon
- Centre de Recherche en Paléontologie - Paris (CR2P), Muséum National d'Histoire Naturelle, CNRS/MNHN/Sorbonne Université, Paris, France
| | - Ricardo Cespedes
- Museo de Historia Natural 'Alcide D'Orbigny', Cochabamba, Bolivia
| | - Romain Amiot
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, Villeurbanne, France
| |
Collapse
|
8
|
Nicholl CSC, Hunt ESE, Ouarhache D, Mannion PD. A second peirosaurid crocodyliform from the Mid-Cretaceous Kem Kem Group of Morocco and the diversity of Gondwanan notosuchians outside South America. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211254. [PMID: 34659786 PMCID: PMC8511751 DOI: 10.1098/rsos.211254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
Notosuchians are an extinct clade of terrestrial crocodyliforms with a particularly rich record in the late Early to Late Cretaceous (approx. 130-66 Ma) of Gondwana. Although much of this diversity comes from South America, Africa and Indo-Madagascar have also yielded numerous notosuchian remains. Three notosuchian species are currently recognized from the early Late Cretaceous (approx. 100 Ma) Kem Kem Group of Morocco, including the peirosaurid Hamadasuchus rebouli. Here, we describe two new specimens that demonstrate the presence of at least a fourth notosuchian species in this fauna. Antaeusuchus taouzensis n. gen. n. sp. is incorporated into one of the largest notosuchian-focused character-taxon matrices yet to be compiled, comprising 443 characters scored for 63 notosuchian species, with an increased sampling of African and peirosaurid species. Parsimony analyses run under equal and extended implied weighting consistently recover Antaeusuchus as a peirosaurid notosuchian, supported by the presence of two distinct waves on the dorsal dentary surface, a surangular which laterally overlaps the dentary above the mandibular fenestra, and a relatively broad mandibular symphysis. Within Peirosauridae, Antaeusuchus is recovered as the sister taxon of Hamadasuchus. However, it differs from Hamadasuchus with respect to several features, including the ornamentation of the lateral surface of the mandible, the angle of divergence of the mandibular rami, the texture of tooth enamel and the shape of the teeth, supporting their generic distinction. We present a critical reappraisal of the non-South American Gondwanan notosuchian record, which spans the Middle Jurassic-late Eocene. This review, as well as our phylogenetic analyses, indicate the existence of at least three approximately contemporaneous peirosaurid lineages within the Kem Kem Group, alongside other notosuchians, and support the peirosaurid affinities of the 'trematochampsid' Miadanasuchus oblita from the Maastrichtian of Madagascar. Furthermore, the Cretaceous record demonstrates the presence of multiple lineages of approximately contemporaneous notosuchians in several African and Madagascan faunas, and supports previous suggestions regarding an undocumented pre-Aptian radiation of Notosuchia. By contrast, the post-Cretaceous record is depauperate, comprising rare occurrences of sebecosuchians in north Africa prior to their extirpation.
Collapse
Affiliation(s)
- Cecily S. C. Nicholl
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Eloise S. E. Hunt
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Science and Solutions for a Changing Planet DTP, and the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Driss Ouarhache
- Laboratoire Géosystèmes, Environnement et Développement Durable, Département de Géologie, Faculté des Sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdellah, BP 1796, Atlas 30 000, Fès, Morocco
| | - Philip D. Mannion
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
9
|
New transitional fossil from late Jurassic of Chile sheds light on the origin of modern crocodiles. Sci Rep 2021; 11:14960. [PMID: 34294766 PMCID: PMC8298593 DOI: 10.1038/s41598-021-93994-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/09/2021] [Indexed: 11/08/2022] Open
Abstract
We describe the basal mesoeucrocodylian Burkesuchus mallingrandensis nov. gen. et sp., from the Upper Jurassic (Tithonian) Toqui Formation of southern Chile. The new taxon constitutes one of the few records of non-pelagic Jurassic crocodyliforms for the entire South American continent. Burkesuchus was found on the same levels that yielded titanosauriform and diplodocoid sauropods and the herbivore theropod Chilesaurus diegosuarezi, thus expanding the taxonomic composition of currently poorly known Jurassic reptilian faunas from Patagonia. Burkesuchus was a small-sized crocodyliform (estimated length 70 cm), with a cranium that is dorsoventrally depressed and transversely wide posteriorly and distinguished by a posteroventrally flexed wing-like squamosal. A well-defined longitudinal groove runs along the lateral edge of the postorbital and squamosal, indicative of a anteroposteriorly extensive upper earlid. Phylogenetic analysis supports Burkesuchus as a basal member of Mesoeucrocodylia. This new discovery expands the meagre record of non-pelagic representatives of this clade for the Jurassic Period, and together with Batrachomimus, from Upper Jurassic beds of Brazil, supports the idea that South America represented a cradle for the evolution of derived crocodyliforms during the Late Jurassic.
Collapse
|
10
|
Blanco A. Importance of the postcranial skeleton in eusuchian phylogeny: Reassessing the systematics of allodaposuchid crocodylians. PLoS One 2021; 16:e0251900. [PMID: 34106925 PMCID: PMC8189472 DOI: 10.1371/journal.pone.0251900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
Our current knowledge on the crocodyliform evolution is strongly biased towards the skull morphology, and the postcranial skeleton is usually neglected in many taxonomic descriptions. However, it is logical to expect that it can contribute with its own phylogenetic signal. In this paper, the changes in the tree topology caused by the addition of the postcranial information are analysed for the family Allodaposuchidae, the most representative eusuchians in the latest Cretaceous of Europe. At present, different phylogenetic hypotheses have been proposed for this group without reaching a consensus. The results of this paper evidence a shift in the phylogenetic position when the postcranium is included in the dataset, pointing to a relevant phylogenetic signal in the postcranial elements. Finally, the phylogenetic relationships of allodaposuchids within Eusuchia are reassessed; and the internal relationships within Allodaposuchidae are also reconsidered after an exhaustive revision of the morphological data. New and improved diagnoses for each species are here provided.
Collapse
Affiliation(s)
- Alejandro Blanco
- Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
- Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany
| |
Collapse
|
11
|
Scavezzoni I, Fischer V. The postcranial skeleton of Cerrejonisuchus improcerus (Crocodyliformes: Dyrosauridae) and the unusual anatomy of dyrosaurids. PeerJ 2021; 9:e11222. [PMID: 34026348 PMCID: PMC8117932 DOI: 10.7717/peerj.11222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/15/2021] [Indexed: 01/11/2023] Open
Abstract
Dyrosauridae is a clade of neosuchian crocodyliforms that diversified in terrestrial and aquatic environments across the Cretaceous-Paleogene transition. The postcranial anatomy of dyrosaurids has long been overlooked, obscuring both their disparity and their locomotive adaptations. Here we thoroughly describe of the postcranial remains of an unusually small dyrosaurid, Cerrejonisuchus improcerus, from the middle-late Paleocene Cerrejón Formation of Colombia, and we provide a wealth of new data concerning the postcranial anatomy of the key dyrosaurids: Congosaurus bequaerti and Hyposaurus rogersii. We identify a series of postcranial autapomorphies in Cerrejonisuchus improcerus (an elliptic-shaped odontoid laterally wide, a ulna possessing a double concavity, a fibula bearing a widely flattened proximal end, a pubis showing a large non-triangular distal surface) as well as functionally-important traits such as a relatively long ulna (85% of the humerus’ length), short forelimb (83% of hindlimb’s length), or thoracic vertebra bearing comparatively large lateral process (with widened parapophysis and diapophysis) along with strongly arched thoracic ribs allowing a more sturdy and cylindrical rib cage. These indicate a more terrestrial lifestyle for Cerrejonisuchus compared to the derived members of the clade. We also built a dataset of 187 traits on 27 taxa, that extensively samples the cranial and postcranial architectures of exemplar crocodyliforms. We analyze these data in via Principal Coordinate Analysis (PCoA) to visualize the postcranial morphospace occupation of Dyrosauridae, Thalattosuchia, and Crocodylia. Our data reveal the existence of a distinctive postcranial anatomy for Dyrosauridae that is markedly distinct from that of crocodylians. As a result, modern crocodylians are probably not good functional analog for extinct crocodyliformes. Postcranial data should also be more widely used in phylogenetic and disparity analyses of Crocodyliformes.
Collapse
Affiliation(s)
- Isaure Scavezzoni
- Evolution and Diversity Dynamics Lab, University of Liège, Liège, Belgium
| | - Valentin Fischer
- Evolution and Diversity Dynamics Lab, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Jouve S, de Muizon C, Cespedes-Paz R, Sossa-Soruco V, Knoll S. The longirostrine crocodyliforms from Bolivia and their evolution through the Cretaceous–Palaeogene boundary. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Numerous aquatic crocodyliforms have been found during the last four decades of fieldwork in the Maastrichtian El Molino and Palaeocene Santa Lucía Formations in Bolivia. We describe new material in detail and review previously described specimens. This work enables identification of at least three new Palaeocene dyrosaurid species and the reassignement of the Maastrichtian crocodylian Dolichochampsa minima to Gavialoidea. Dolichochampsa minima is thus the oldest known South American member of this clade; previously, gavialoids were known from this continent only since the late Eocene. A new phylogenetic analysis suggests that Vectisuchus leptognathus and Elosuchus are more closely related to Dyrosauridae, and a new name, Dyrosauroidea, is proposed for this clade. Several characters previously considered as typical for dyrosaurids are present in Elosuchus. Comparison of this phylogenetic analysis with geographical and temporal distributions helps to reveal a new scenario for dyrosaurid dispersal. A high number of intercontinental interchanges occurred during the Maastrichtian, whereas higher intracontinental diversification occurred during the lower Palaeocene.
Collapse
Affiliation(s)
- Stéphane Jouve
- CR2P, Sorbonne Université, CNRS-MNHN-Sorbonne Université, 4 Place Jussieu, Paris, France
| | - Christian de Muizon
- CR2P, Muséum National d’Histoire Naturelle, CNRS-MNHN-Sorbonne Université, CP38, 8 rue Buffon, Paris, France
| | | | | | - Stephane Knoll
- Laboratory of Animal Nutrition, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
13
|
Sellés AG, Blanco A, Vila B, Marmi J, López-Soriano FJ, Llácer S, Frigola J, Canals M, Galobart À. A small Cretaceous crocodyliform in a dinosaur nesting ground and the origin of sebecids. Sci Rep 2020; 10:15293. [PMID: 32943663 PMCID: PMC7499430 DOI: 10.1038/s41598-020-71975-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/19/2020] [Indexed: 11/08/2022] Open
Abstract
Sebecosuchia was a group of highly specialized cursorial crocodyliforms that diversified during the Cretaceous and persist until the end of the Miocene. Their unique combination of cranial and post-cranial features indicates that they were active terrestrial predators that occupied the apex of the Late Cretaceous terrestrial ecosystems, even competing with theropod dinosaurs. Here, we report the discovery of the earliest sebecid worldwide, and the first from Eurasia, Ogresuchus furatus gen. et sp. nov., based on a semi-articulate specimen located in a titanosaurian sauropod nesting ground. The new taxon challenges current biogeographical models about the early dispersal and radiation of sebecid crocodylomorphs, and suggests an origin of the group much earlier than previously expected. Moreover, the new taxon suggests a potential convergent evolution between linages geographically isolated. Taphonomic evidences suggest that Ogresuchus died almost in the same place where fossilized, in a dinosaur nesting area. Biometric and morphologic observations lead to speculate that Ogresuchus could easily predate on sauropod hatchlings.
Collapse
Grants
- Ministerio de Educación, Cultura y Deporte (Ministry of Education, Culture and Sports, Spain)
- Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia (Ministry of Culture, Education and University Planning, Government of Galicia)
Collapse
Affiliation(s)
- Albert G Sellés
- Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP, Edifici Z, C/ de Les Columnes S/N. Campus Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.
- Museu de La Conca Dellà, c/Museu 4, 25650, Isona, Lleida, Spain.
| | - Alejandro Blanco
- Centro de Investigacións Científicas Avanzadas (CICA), Department de Física E Ciencias da Terra, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071, A Coruña, Spain
- Bayerische Staatssammlung für Paläontologie Und Geologie Mesozoic Vertebrates Group, Richard-Wagner-Str. 10, 80333, München, Germany
| | - Bernat Vila
- Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP, Edifici Z, C/ de Les Columnes S/N. Campus Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
- Museu de La Conca Dellà, c/Museu 4, 25650, Isona, Lleida, Spain
| | - Josep Marmi
- Museu de La Conca Dellà, c/Museu 4, 25650, Isona, Lleida, Spain
| | - Francisco J López-Soriano
- Department of Biochemistry and Molecular Biology, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08007, Barcelona, Spain
| | - Sergio Llácer
- Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP, Edifici Z, C/ de Les Columnes S/N. Campus Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Jaime Frigola
- GRC Geociències Marines, Dept. de Dinàmica de La Terra I de L'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Miquel Canals
- GRC Geociències Marines, Dept. de Dinàmica de La Terra I de L'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Àngel Galobart
- Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP, Edifici Z, C/ de Les Columnes S/N. Campus Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
- Museu de La Conca Dellà, c/Museu 4, 25650, Isona, Lleida, Spain
| |
Collapse
|
14
|
Montefeltro FC, Lautenschlager S, Godoy PL, Ferreira GS, Butler RJ. A unique predator in a unique ecosystem: modelling the apex predator within a Late Cretaceous crocodyliform-dominated fauna from Brazil. J Anat 2020; 237:323-333. [PMID: 32255518 DOI: 10.1111/joa.13192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Theropod dinosaurs were relatively scarce in the Late Cretaceous ecosystems of southeast Brazil. Instead, hypercarnivorous crocodyliforms known as baurusuchids were abundant and probably occupied the ecological role of apex predators. Baurusuchids exhibited a series of morphological adaptations hypothesized to be associated with this ecological role, but quantitative biomechanical analyses of their morphology have so far been lacking. Here, we employ a biomechanical modelling approach, applying finite element analysis (FEA) to models of the skull and mandibles of a baurusuchid specimen. This allows us to characterize the craniomandibular apparatus of baurusuchids, as well as to compare the functional morphology of the group with that of other archosaurian carnivores, such as theropods and crocodylians. Our results support the ecological role of baurusuchids as specialized apex predators in the continental Late Cretaceous ecosystems of South America. With a relatively weak bite force (~600 N), the predation strategies of baurusuchids likely relied on other morphological specializations, such as ziphodont dentition and strong cervical musculature. Comparative assessments of the stress distribution and magnitude of scaled models of other predators (the theropod Allosaurus fragilis and the living crocodylian Alligator mississippiensis) consistently show different responses to loadings under the same functional scenarios, suggesting distinct predatory behaviors for these animals. The unique selective pressures in the arid to semi-arid Late Cretaceous ecosystems of southeast Brazil, which were dominated by crocodyliforms, possibly drove the emergence and evolution of the biomechanical features seen in baurusuchids, which are distinct from those previously reported for other predatory taxa.
Collapse
Affiliation(s)
- Felipe C Montefeltro
- Laboratório de Paleontologia e Evolução de Ilha Solteira, UNESP, Ilha Solteira, Brazil.,School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Pedro L Godoy
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Gabriel S Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
15
|
Puértolas-Pascual E, Mateus O. A three-dimensional skeleton of Goniopholididae from the Late Jurassic of Portugal: implications for the Crocodylomorpha bracing system. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractWe here describe an articulated partial skeleton of a small neosuchian crocodylomorph from the Lourinhã Formation (Late Jurassic, Portugal). The skeleton corresponds to the posterior region of the trunk and consists of dorsal, ventral and limb osteoderms, dorsal vertebrae, thoracic ribs and part of the left hindlimb. The paravertebral armour is composed of two rows of paired osteoderms with the lateral margins ventrally deflected and an anterior process for a ‘peg and groove’ articulation. We also compare its dermal armour with that of several Jurassic and Cretaceous neosuchian crocodylomorphs, establishing a detailed description of this type of osteoderms.These features are present in crocodylomorphs with a closed paravertebral armour bracing system. The exceptional 3D conservation of the specimen, and the performance of a micro-CT scan, allowed us to interpret the bracing system of this organism to assess if previous models were accurate. The characters observed in this specimen are congruent with Goniopholididae, a clade of large neosuchians abundant in most semi-aquatic ecosystems from the Jurassic and Early Cretaceous of Laurasia. However, its small size, contrasted with the sizes observed in goniopholidids, left indeterminate whether it could have been a dwarf or juvenile individual. Future histological analyses could shed light on this.
Collapse
Affiliation(s)
- E Puértolas-Pascual
- Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia-GeoBioTec, Monte de Caparica, Portugal
- Museu da Lourinhã, Lourinhã, Portugal
- Aragosaurus-IUCA Research group, Zaragoza, Spain
| | - O Mateus
- Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia-GeoBioTec, Monte de Caparica, Portugal
- Museu da Lourinhã, Lourinhã, Portugal
| |
Collapse
|
16
|
Godoy PL, Benson RBJ, Bronzati M, Butler RJ. The multi-peak adaptive landscape of crocodylomorph body size evolution. BMC Evol Biol 2019; 19:167. [PMID: 31390981 PMCID: PMC6686447 DOI: 10.1186/s12862-019-1466-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/24/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Little is known about the long-term patterns of body size evolution in Crocodylomorpha, the > 200-million-year-old group that includes living crocodylians and their extinct relatives. Extant crocodylians are mostly large-bodied (3-7 m) predators. However, extinct crocodylomorphs exhibit a wider range of phenotypes, and many of the earliest taxa were much smaller (< 1.2 m). This suggests a pattern of size increase through time that could be caused by multi-lineage evolutionary trends of size increase or by selective extinction of small-bodied species. Here, we characterise patterns of crocodylomorph body size evolution using a model fitting-approach (with cranial measurements serving as proxies). We also estimate body size disparity through time and quantitatively test hypotheses of biotic and abiotic factors as potential drivers of crocodylomorph body size evolution. RESULTS Crocodylomorphs reached an early peak in body size disparity during the Late Jurassic, and underwent an essentially continual decline since then. A multi-peak Ornstein-Uhlenbeck model outperforms all other evolutionary models fitted to our data (including both uniform and non-uniform), indicating that the macroevolutionary dynamics of crocodylomorph body size are better described within the concept of an adaptive landscape, with most body size variation emerging after shifts to new macroevolutionary regimes (analogous to adaptive zones). We did not find support for a consistent evolutionary trend towards larger sizes among lineages (i.e., Cope's rule), or strong correlations of body size with climate. Instead, the intermediate to large body sizes of some crocodylomorphs are better explained by group-specific adaptations. In particular, the evolution of a more aquatic lifestyle (especially marine) correlates with increases in average body size, though not without exceptions. CONCLUSIONS Shifts between macroevolutionary regimes provide a better explanation of crocodylomorph body size evolution on large phylogenetic and temporal scales, suggesting a central role for lineage-specific adaptations rather than climatic forcing. Shifts leading to larger body sizes occurred in most aquatic and semi-aquatic groups. This, combined with extinctions of groups occupying smaller body size regimes (particularly during the Late Cretaceous and Cenozoic), gave rise to the upward-shifted body size distribution of extant crocodylomorphs compared to their smaller-bodied terrestrial ancestors.
Collapse
Affiliation(s)
- Pedro L Godoy
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK. .,Present Address: Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
| | | | - Mario Bronzati
- Laboratório de Paleontologia de Ribeirão Preto, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Rio JP, Mannion PD, Tschopp E, Martin JE, Delfino M. Reappraisal of the morphology and phylogenetic relationships of the alligatoroid crocodylian Diplocynodon hantoniensis from the late Eocene of the United Kingdom. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractDiplocynodon is a genus of basal alligatoroid comprising nine species, which spanned the late Palaeocene to middle Miocene of Europe. Despite recent revisions of most Diplocynodon species, one of the earliest named and most complete, Diplocynodon hantoniensis, has not been re-described for over 150 years. This species is known from the remains of numerous individuals from the Priabonian (late Eocene) Headon Hill Formation, which crops out at Hordle (Hordwell) Cliff in Hampshire, United Kingdom. Here we re-describe and diagnose Diplocynodon hantoniensis, providing the first detailed description of postcranial anatomy in Diplocynodon, and indeed any basal alligatoroid. Diplocynodon hantoniensis is diagnosed by four autapomorphies, including retention of the ectopterygoid–pterygoid flexure through ontogeny and a unique anterior process of the ectopterygoid adjacent to the posteriormost maxillary alveoli. A critical review of previously referred remains from elsewhere in Europe and the USA restricts Diplocynodon hantoniensis to the late Eocene of the UK. Through comparisons with extant crocodylians, the well-preserved postcranial skeleton enables the interpretation of numerous muscle attachments in the forelimbs and hindlimbs, providing a potentially rich source of character data for future phylogenetic analyses. Based on a comparison of humeral morphology between a large sample of crocodylian species, we outline two new morphological characters in the humerus. We include D. hantoniensis in a phylogenetic analysis, including all putative Diplocynodon species (103 taxa scored for 187 characters). We use four different character-weighting schemes: equal weighting, implied weighting (k value = 8) and extended implied weighting with k-values of 4 and 8. In general, these weighted analyses produce congruent results with the equal-weights analysis, and increase the resolution within Diplocynodon. We recover a monophyletic Diplocynodon in three of the four analyses. However, the fourth analysis, with the strongest downweighting of homoplastic characters and missing data (extended implied weighting with k = 4), recovers the Palaeocene Diplocynodon remensis outside Diplocynodon. Our comprehensive revision of one of the most completely known Diplocynodon species facilitates comparisons in the genus, as well as between other basal alligatoroids, and forms the basis for comparing postcranial anatomy in other fossil crocodylians.
Collapse
Affiliation(s)
- Jonathan P Rio
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Philip D Mannion
- Department of Earth Sciences, University College London, London, UK
| | - Emanuel Tschopp
- Division of Paleontology, American Museum of Natural History, New York, USA
| | - Jeremy E Martin
- Université Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 Laboratoire de Géologie de Lyon: Terre, Planète, Environnement, Lyon, France
| | - Massimo Delfino
- Dipartimento di Scienze della Terra, Università di Torino, Torino, Italy
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTAICP, Carrer de les Columnes s/n, Campus de la UAB, Barcelona, Spain
| |
Collapse
|
18
|
Sookias RB. Exploring the effects of character construction and choice, outgroups and analytical method on phylogenetic inference from discrete characters in extant crocodilians. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Phylogenies for fossil taxa must be inferred from morphology, but accuracy of inference is questionable. Here, morphological characters for extant crocodilians are investigated to assess how to improve inference accuracy. The homoplasy of characters is assessed against a DNA-based phylogenetic tree. Cranial characters are significantly less homoplastic, but this result is perhaps confounded by research effort. Meristic characters are significantly more homoplastic and should be used with caution. Characters were reassessed first hand and documented. Those characters passing tests of robust construction are significantly less homoplastic. Suggestions are made for means to improve coding of discrete characters. Phylogenies inferred using only robust characters and a reassessed matrix, including corrected scorings, were not overall closer to the DNA tree, but did often place the gharial (Gavialis) in a position agreeing with or closer to it. The effects of the choice of analytical method were modest, but Bayesian analysis of the reassessed matrix placed Gavialis and Mecistops (slender-snouted crocodile) in DNA-concordant positions. Use of extant rather than extinct outgroups, even with the original matrix, placed Gavialis in a more DNA-concordant position, as did factoring out 3D skull shape. The morphological case for placement of Gavialis outside other extant crocodilians is arguably overstated, with many characters linked to skull shape.
Collapse
Affiliation(s)
- Roland B Sookias
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße, Berlin, Germany
| |
Collapse
|
19
|
Wilberg EW, Turner AH, Brochu CA. Evolutionary structure and timing of major habitat shifts in Crocodylomorpha. Sci Rep 2019; 9:514. [PMID: 30679529 PMCID: PMC6346023 DOI: 10.1038/s41598-018-36795-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
Extant crocodylomorphs are semiaquatic ambush predators largely restricted to freshwater or estuarine environments, but the group is ancestrally terrestrial and inhabited a variety of ecosystems in the past. Despite its rich ecological history, little effort has focused on elucidating the historical pattern of ecological transitions in the group. Traditional views suggested a single shift from terrestrial to aquatic in the Early Jurassic. However, new fossil discoveries and phylogenetic analyses tend to imply a multiple-shift model. Here we estimate ancestral habitats across a comprehensive phylogeny and show at least three independent shifts from terrestrial to aquatic and numerous other habitat transitions. Neosuchians first invade freshwater habitats in the Jurassic, with up to four subsequent shifts into the marine realm. Thalattosuchians first appear in marine habitats in the Early Jurassic. Freshwater semiaquatic mahajangasuchids are derived from otherwise terrestrial notosuchians. Within nearly all marine groups, some species return to freshwater environments. Only twice have crocodylomorphs reverted from aquatic to terrestrial habitats, both within the crown group. All living non-alligatorid crocodylians have a keratinised tongue with salt-excreting glands, but the lack of osteological correlates for these adaptations complicates pinpointing their evolutionary origin or loss. Based on the pattern of transitions to the marine realm, our analysis suggests at least four independent origins of saltwater tolerance in Crocodylomorpha.
Collapse
Affiliation(s)
- Eric W Wilberg
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Christopher A Brochu
- Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
20
|
Martinelli AG, Marinho TS, Iori FV, Ribeiro LCB. The first Caipirasuchus (Mesoeucrocodylia, Notosuchia) from the Late Cretaceous of Minas Gerais, Brazil: new insights on sphagesaurid anatomy and taxonomy. PeerJ 2018; 6:e5594. [PMID: 30202663 PMCID: PMC6129144 DOI: 10.7717/peerj.5594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/16/2018] [Indexed: 11/20/2022] Open
Abstract
Field work conducted by the staff of the Centro de Pesquisas Paleontológicas Llewellyn Ivor Price of the Universidade Federal do Triângulo Mineiro since 2009 at Campina Verde municipality (MG) have resulted in the discovery of a diverse vertebrate fauna from the Adamantina Formation (Bauru Basin). The baurusuchid Campinasuchus dinizi was described in 2011 from Fazenda Três Antas site and after that, preliminary descriptions of a partial crocodyliform egg, abelisaurid teeth, and fish remains have been done. Recently, the fossil sample has been considerably increased including the discovery of several, partially articulated fish remains referred to Lepisosteiformes and an almost complete and articulated skeleton referred to a new species of Caipirasuchus (Notosuchia, Sphagesauridae), which is the main subject of this contribution. At present, this genus was restricted to the Adamantina Formation cropping out in São Paulo state, with the species Caipirasuchus montealtensis, Caipirasuchus paulistanus, and Caipirasuchus stenognathus. The new material represents the holotype of a new species, Caipirasuchus mineirus n. sp., diferenciated from the previously ones due to the following traits: last two maxillary teeth located posterior to anterior edge of infraorbital fenestra, elongated lateroventral maxillo-jugal suture-about ½ the anteroposterior maxillar length-and contact between posterior crest of quadrate and posterior end of squamosal forming an almost 90° flaring roof of the squamosal, among others. C. mineirus was found in the same outcrop than Campinasuchus but stratigraphically the former occurs in the lower portion of the section with no unambiguous data supporting the coexistance of both taxa.
Collapse
Affiliation(s)
- Agustín G. Martinelli
- Instituto de Geociencias, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Pesquisas Paleontológicas L. I. Price, Complexo Cultural e Científico Peirópolis, Pró-Reitoria de Extensão Universitária, Universidade Federal do Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
- CONICET-Sección Paleontologia de Vertebrados, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina
| | - Thiago S. Marinho
- Centro de Pesquisas Paleontológicas L. I. Price, Complexo Cultural e Científico Peirópolis, Pró-Reitoria de Extensão Universitária, Universidade Federal do Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
- Departamento de Ciências Biológicas, Universidade Federal do Triângulo Mineiro, Instituto de Ciências Exatas, Naturais e Educação, Uberaba, Minas Gerais, Brazil
| | - Fabiano V. Iori
- Museu de Paleontologia “Prof. Antonio Celso de Arruda Campos”, Monte Alto, Sao Paulo, Brazil
| | - Luiz Carlos B. Ribeiro
- Centro de Pesquisas Paleontológicas L. I. Price, Complexo Cultural e Científico Peirópolis, Pró-Reitoria de Extensão Universitária, Universidade Federal do Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
21
|
Otero A. Forelimb musculature and osteological correlates in Sauropodomorpha (Dinosauria, Saurischia). PLoS One 2018; 13:e0198988. [PMID: 29975691 PMCID: PMC6033415 DOI: 10.1371/journal.pone.0198988] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
This contribution presents the forelimb muscular arrangement of sauropodomorph dinosaurs as inferred by comparisons with living archosaurs (crocodiles and birds) following the Extant Phylogenetic Bracket approach. Forty-one muscles were reconstructed, including lower limb and manus musculature, which prior information available was scarce for sauropodomorphs. A strong emphasis was placed on osteological correlates (such as tubercles, ridges and striae) and comparisons with primitive archosauromorphs are included in order to track these correlates throughout the clade. This should help to elucidate how widespread among other archosaurian groups are these osteological correlates identified in Sauropodomorpha. The ultimate goal of this contribution was to provide an exhaustive guide to muscular identification in fossil archosaurs and to offer solid anatomical bases for future studies based on osteology, myology, functional morphology and systematics.
Collapse
Affiliation(s)
- Alejandro Otero
- CONICET - División Paleontología de Vertebrados, Museo de La Plata, La Plata, Argentina
- * E-mail: ,
| |
Collapse
|
22
|
Kuzmin IT, Skutschas PP, Boitsova EA, Sues HD. Revision of the large crocodyliformKansajsuchus(Neosuchia) from the Late Cretaceous of Central Asia. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ivan T Kuzmin
- Vertebrate Zoology Department, Saint Petersburg State University, Saint Petersburg, Russia
| | - Pavel P Skutschas
- Vertebrate Zoology Department, Saint Petersburg State University, Saint Petersburg, Russia
| | - Elizaveta A Boitsova
- Vertebrate Zoology Department, Saint Petersburg State University, Saint Petersburg, Russia
| | - Hans-Dieter Sues
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|