1
|
Meuser M, Schwitzer S, Faraji P, Ernst A, Basta D. Peri-Traumatic Near-Infrared Light Treatment Attenuates the Severity of Noise-Induced Hearing Loss by Rescuing (Type I) Spiral Ganglion Neurons in Mice. Brain Sci 2025; 15:62. [PMID: 39851430 PMCID: PMC11763776 DOI: 10.3390/brainsci15010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Previous studies have shown that multiple post-traumatic irradiations of the cochlea with near-infrared light (NIR) can significantly reduce noise-induced hearing loss. However, a single NIR pre-treatment was shown to have the same effect. Extending the pre-treatment time did not result in any further reduction in hearing loss. The present study investigated whether a combined NIR pre- and post-treatment had an increased effect on hearing preservation. METHODS Frequency-specific auditory brainstem potential thresholds (ABR) were determined in young adult mice. One group (n = 8) underwent NIR irradiation (808 nm, 120 mW, 15 min) of the cochlea, followed by a 30 min noise exposure (5-20 kHz, 115 dB SPL). A post-NIR treatment was administered for 30 min immediately following the noise trauma. After 14 days, hearing loss was determined by ABR measurements. The results were compared with a trauma-only group (n = 8) and an untreated control group (n = 5). Subsequently, the spiral ganglion neuron density was investigated. RESULTS A peri-traumatic NIR treatment resulted in a significantly lower hearing loss compared to the trauma-only group. Hearing protection in these animals significantly exceeded the effect of an exclusive pre- or post-treatment across all frequencies. A loss of spiral ganglion neurons in the trauma-only group was observed, which was significantly rescued by the peri-traumatic NIR treatment. CONCLUSIONS A single peri-traumatic NIR treatment seems to be the more effective approach for the preservation of hearing thresholds after noise trauma compared to an isolated pre- or post-treatment. One target of the protective effect seems to be the spiral ganglion.
Collapse
Affiliation(s)
| | | | | | | | - Dietmar Basta
- Department of Otolaryngology at Unfallkrankenhaus Berlin, Charité Medical School, University of Berlin, 12683 Berlin, Germany
| |
Collapse
|
2
|
Chang SY, Lee MY. Photobiomodulation as a Potential Adjuvant Therapy to Improve Cochlear Implant Efficiency. Photobiomodul Photomed Laser Surg 2024; 42:663-667. [PMID: 39347595 DOI: 10.1089/photob.2024.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Objective: Photobiomodulation (PBM) is a noninvasive therapeutic modality with widespread applications for modulating various biological processes. Although the exact mechanisms of action remain uncertain, PBM promotes homeostasis through diverse pathways, including reducing inflammation and enhancing tissue recovery. Hearing loss is irreversible in mammals due to the limited regenerative capacity of cochlear hair cells. Cochlear implants offer a solution by electrically stimulating the auditory nerve, bypassing damaged hair cells in individuals with severe hearing loss. However, postoperative inflammatory responses and cochlear nerve fiber damage can compromise implant efficacy. Materials and Methods: We investigated current strategies to minimize secondary cochlear damage after cochlear implantation and evaluated the potential of PBM as an adjuvant therapeutic approach. Results: The auditory cell protective effects of PBM could significantly enhance the performance of EAS devices in individuals with residual hearing. Further, postoperative CI is accompanied by an inflammatory response characterized by the upregulation of specific cytokines. Conclusion: Considering the neuroregenerative potential of PBM, its application as a neuroprotective strategy warrants further validation.
Collapse
Affiliation(s)
- So-Young Chang
- Beckman Laser Institute Korea, Dankook University, Cheonan, Republic of Korea
| | - Min Young Lee
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
3
|
Nikookam Y, Zia N, Lotfallah A, Muzaffar J, Davis-Manders J, Kullar P, Smith M, Bale G, Boyle P, Irving R, Jiang D, Bance M. The effect of photobiomodulation on hearing loss: A systematic review. Clin Otolaryngol 2024; 49:41-61. [PMID: 37885344 DOI: 10.1111/coa.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/16/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023]
Abstract
OBJECTIVES To assess outcomes associated with photobiomodulation therapy (PBMT) for hearing loss in human and animal studies. DESIGN Systematic review and narrative synthesis in accordance with PRISMA guidelines. SETTING Data bases searched: MEDLINE, EMBASE, CENTRAL, ClinicalTrials.gov and Web of Science. No limits were placed on language or year of publication. Review conducted in accordance with the PRISMA 2020 statement. PARTICIPANTS All human and animal subjects treated with PBMT for hearing loss. MAIN OUTCOME MEASURES Pre- and post-PBMT audio metric outcomes. RESULTS Searches identified 122 abstracts and 49 full text articles. Of these, 17 studies met the inclusion criteria, reporting outcomes in 327 animals (11 studies), 30 humans (1 study), and 40 animal specimens (5 studies). PBMT parameters included 6 different wavelengths: 908 nm (1 study), 810 nm (1 study), 532 & 635 nm (1 study), 830 nm (3 studies), 808 nm (11 studies). The duration ranged from 4 to 60 minutes in a session, and the follow-up ranged from 5-28 days. Outcomes improved significantly when wavelengths within the range of 800-830 nm were used, and with greater duration of PBMT exposure. Included studies predominantly consisted of non-randomized controlled trials (10 studies). CONCLUSIONS Hearing outcomes following PBMT appear to be superior to no PBMT for subjects with hearing loss, although higher level evidence is required to verify this. PBMT enables concentrated, focused delivery of light therapy to the inner ear through a non-invasive manner with minimal side effects. As a result of heterogeneity in reporting PBMT parameters and outcomes across the included studies, direct comparison is challenging.
Collapse
Affiliation(s)
- Yasmin Nikookam
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Nawal Zia
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Andrew Lotfallah
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Jameel Muzaffar
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- University of Cambridge, Department of Clinical Neurosciences, Addenbrooke's Health Campus, Cambridge, UK
| | - Jennifer Davis-Manders
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Peter Kullar
- University of Cambridge, Department of Clinical Neurosciences, Addenbrooke's Health Campus, Cambridge, UK
| | - Matthew Smith
- University of Cambridge, Department of Clinical Neurosciences, Addenbrooke's Health Campus, Cambridge, UK
| | - Gemma Bale
- Department of Physics, Cavendish Laboratory, Cambridge, UK
- Electrical Engineering, Cambridge, UK
| | | | - Richard Irving
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Dan Jiang
- Guy's and St Thomas' NHS Foundation Trust, Hearing Implant Centre, St. Thomas' Hospital, London, UK
- King's College London, Centre for Craniofacial and Regenerative Biology, London, UK
| | - Manohar Bance
- University of Cambridge, Department of Clinical Neurosciences, Addenbrooke's Health Campus, Cambridge, UK
| |
Collapse
|
4
|
Montazeri K, Farhadi M, Fekrazad R, Akbarnejad Z, Chaibakhsh S, Mahmoudian S. Transcranial photobiomodulation in the management of brain disorders. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 221:112207. [PMID: 34119804 DOI: 10.1016/j.jphotobiol.2021.112207] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 01/10/2023]
Abstract
Transcranial photobiomodulation (tPBM) is the process of delivering light photons through the skull to benefit from its modifying effect. Brain disorders are important health problems. The aim of this review was to determine the existing evidence of effectiveness, useful parameters, and safety of tPBM in the management of traumatic brain injury, stroke, Parkinson, and Alzheimer's disease as the common brain disorders. Four online databases, including Cochrane, Pub Med, Embase, and Google scholar were searched according to the Preferred Reporting Items for Systematic Reviews and meta-analyses (PRISMA) guidelines. 4728 articles were obtained in the initial search. Only those articles that were published until September 2020 and designed as randomized clinical trials (RCTs) or animal-controlled studies were included. 6 RCTs, 2 related supplementary articles, and 38 controlled animal studies met the inclusion criteria of this study. No RCTs were performed in the fields of Alzheimer's and Parkinson's diseases. The human RCTs and animal studies reported no adverse events resulted from the use of tPBM. Useful parameters of tPBM were identified according to the controlled animal studies. Since the investigated RCTs had no homogenous results, making an evidence-based decision for definite therapeutic application of tPBM is still unattainable. Altogether, these data support the need for large confirmatory well-designed RCTs for using tPBM as a novel, safe, and easy-to-administer treatment of brain disorders. EVIDENCE BEFORE THIS STUDY High prevalence and complications of brain disorders and also side effects of neuropsychiatric medications have encouraged researchers to find alternative therapeutic techniques which tPBM can be one of them. In present review we tried to determine the existing evidence of effectiveness, useful parameters, and safety of tPBM in the management of traumatic brain injury, stroke, Alzheimer, and Parkinson's disease as common brain disorders. Four online databases, including "Cochrane", "Pub Med", "Embase", and "Google scholar" were searched. Only those articles that were published until September 2020 and designed as RCTs or animal-controlled studies were included. Search keywords were the followings: transcranial photobiomodulation" OR "transcranial low-level laser therapy" AND "stroke" OR "traumatic brain injury" OR "Alzheimer" OR "Parkinson". Several studies have confirmed effectiveness of tPBM in treatment of different brain disorders but the level of evidence of its effectiveness remain to be determined. ADDED VALUE OF THIS STUDY In this study we systematically reviewed human RCTs to determine the existing evidence of tPBM effectiveness in management of four mentioned brain disorders. Since the outcomes of the reviewed RCTs were not homogeneous, further well-designed RCTs are required to decide more definitively on the evidence of this noninvasive and probably safe therapeutic intervention. We hypothesized that non-homogeneous outcomes could be due to inefficiency of PBM parameters. Controlled animal studies have the advantage of using objective tests to evaluate the results and compare them with the control group. We determined useful tPBM parameters based on these studies. IMPLICATIONS OF ALL THE AVAILABLE EVIDENCE This research is part of our main project of tinnitus treatment using photobiomodulation (PBM). Evidence of central nervous system involvement in tinnitus led us to believe that treatment protocol of tinnitus should also include transcranial PBM. The determined useful parameters can be helpful in designing more efficient tPBM protocols in the management of brain disorders and tinnitus as a common debilitating symptom that can be associated with these disorders.
Collapse
Affiliation(s)
- Katayoon Montazeri
- ENT and Head & Neck Research Center, The Five Senses Health eInstitute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head & Neck Research Center, The Five Senses Health eInstitute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head & Neck Research Center, The Five Senses Health eInstitute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Samira Chaibakhsh
- Neuromusculoskeletal Research Center, Firoozgar Hospital, Iran; Eye Research Center, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Mahmoudian
- ENT and Head & Neck Research Center, The Five Senses Health eInstitute, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
5
|
Chang SY, Lee MY. Photobiomodulation with a wavelength > 800 nm induces morphological changes in stem cells within otic organoids and scala media of the cochlea. Lasers Med Sci 2021; 36:1917-1925. [PMID: 33604771 DOI: 10.1007/s10103-021-03268-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 02/09/2021] [Indexed: 12/31/2022]
Abstract
Photobiomodulation (PBM) is a therapeutic approach to certain diseases based on light energy. Currently, stem cells (SCs) are being considered as putative treatments for previously untreatable diseases. One medical condition that could be treated using SCs is sensorineural hearing loss. Theoretically, if properly delivered and differentiated, SCs could replace lost hair cells in the cochlea. However, this is not currently possible due to the structural complexity and limited survival of SCs within the cochlea. PBM facilitates SC differentiation into other target cells in multiple lineages. Using light with a wavelength > 800 nm, which can penetrate the inner ear through the tympanic membrane, we assessed morphological changes of mouse embryonic stem cells (mESCs) during "otic organoid" generation, and within the scala media (SM) of the cochlea, after light energy stimulation. We observed enhanced differentiation, which was confirmed by an increased number of otic vesicles and increased cell attachment inside the SM. These results suggest that > 800-nm light affected the morphology of mESCs within otic organoids and SM of the cochlea. Based on our results, light energy could be used to enhance otic sensory differentiation, despite the structural complexity of the inner ear and limited survival time of SCs within the cochleae. Additional studies to refine the light energy delivery technology and maximize the effect on otic differentiation are required.
Collapse
Affiliation(s)
- So-Young Chang
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea
| | - Min Young Lee
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea. .,Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
6
|
Ferreira MC, de Matos IL, de Toledo IP, Honório HM, Mondelli MFCG. Effects of Low-Level Laser Therapy as a Therapeutic Strategy for Patients With Tinnitus: A Systematic Review. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:279-298. [PMID: 33375822 DOI: 10.1044/2020_jslhr-20-00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Purpose This systematic review aimed to analyze the effects of low-level laser therapy (LLLT) on the severity of tinnitus when compared to no therapy or other modalities of therapies. Method A systematic review protocol was registered at the International Prospective Register of Systematic Reviews (PROSPERO) under the Registration Number CRD42019119376. A search was performed in each of the following databases: EMBASE, LILACS, PubMed, Science Direct, Scopus, Web of Science, Google Scholar, and ProQuest. The inclusion criteria consisted of studies in adults over 16 years of age, randomized clinical trials in which subjects presented chronic (≥ 6 months) and subjective tinnitus (unilateral or bilateral) as well as with or without bilateral sensorineural hearing loss, and studies that used only LLLT for treatment of tinnitus compared to no-therapy group or other modalities of therapy. No language or time restrictions were stipulated. The references were managed by Endnote Web and Rayyan QCRI. Results After the screening process, seven studies remained that attained the eligibility criteria. Regarding the risk of bias, only one study was categorized as low risk of bias; the six remaining studies were classified as moderate risk of bias. The seven included studies mainly assessed the LLLT effects on tinnitus by Visual Analogue Scale, Tinnitus Handicap Inventory, pitch and loudness matching, minimum masking level, and pure-tone audiometry. All the seven selected studies found different degrees of significant results regarding tinnitus severity; however, there was no consensus among the results. Conclusion Even though the LLLT showed positive effects in the tinnitus severity in some studies, it is not possible yet to make any recommendation over its uses for the treatment of tinnitus severity.
Collapse
Affiliation(s)
- Maria Carolina Ferreira
- Speech Therapy Program, Bauru School of Dentistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Izabella Lima de Matos
- Speech Therapy Program, Bauru School of Dentistry, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Heitor Marques Honório
- Department of Pediatric Dentistry, Orthodontics and Community Health, Bauru School of Dentistry, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
7
|
Basta D, Gröschel M, Strübing I, Boyle P, Fröhlich F, Ernst A, Seidl R. Near-infrared-light pre-treatment attenuates noise-induced hearing loss in mice. PeerJ 2020; 8:e9384. [PMID: 32596055 PMCID: PMC7305775 DOI: 10.7717/peerj.9384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/28/2020] [Indexed: 12/02/2022] Open
Abstract
Noise induced hearing loss (NIHL) is accompanied by a reduction of cochlear hair cells and spiral ganglion neurons. Different approaches have been applied to prevent noise induced apoptosis / necrosis. Physical intervention is one technique currently under investigation. Specific wavelengths within the near-infrared light (NIR)-spectrum are known to influence cytochrome-c-oxidase activity, which leads in turn to a decrease in apoptotic mechanisms. It has been shown recently that NIR can significantly decrease the cochlear hair cell loss if applied daily for 12 days after a noise exposure. However, it is still unclear if a single NIR-treatment, just before a noise exposure, could induce similar protective effects. Therefore, the present study was conducted to investigate the effect of a single NIR-pre-treatment aimed at preventing or limiting NIHL. The cochleae of adult NMRI-mice were pre-treated with NIR-light (808 nm, 120 mW) for 5, 10, 20, 30 or 40 minutes via the external ear canal. All animals were noised exposed immediately after the pre-treatment by broad band noise (5–20 kHz) for 30 minutes at 115 dB SPL. Frequency specific ABR-recordings to determine auditory threshold shift were carried out before the pre-treatment and two weeks after the noise exposure. The amplitude increase for wave IV and cochlear hair cell loss were determined. A further group of similar mice was noise exposed only and served as a control for the NIR pre-exposed groups. Two weeks after noise exposure, the ABR threshold shifts of NIR-treated animals were significantly lower (p < 0.05) than those of the control animals. The significance was at three frequencies for the 5-minute pre-treatment group and across the entire frequency range for all other treatment groups. Due to NIR light, the amplitude of wave four deteriorates significantly less after noise exposure than in controls. The NIR pre-treatment had no effect on the loss of outer hair cells, which was just as high with or without NIR-light pre-exposure. Relative to the entire number of outer hair cells across the whole cochlea, outer hair cell loss was rather negligible. No inner hair cell loss whatever was detected. Our results suggest that a single NIR pre-treatment induces a very effective protection of cochlear structures from noise exposure. Pre-exposure of 10 min seems to emerge as the optimal dosage for our experimental setup. A saturated effect occurred with higher dosage-treatments. These results are relevant for protection of residual hearing in otoneurosurgery such as cochlear implantation.
Collapse
Affiliation(s)
- Dietmar Basta
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Moritz Gröschel
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Ira Strübing
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | | | - Felix Fröhlich
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Arne Ernst
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Rainer Seidl
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| |
Collapse
|
8
|
Lee JH, Lee MY, Chung PS, Jung JY. Photobiomodulation using low-level 808 nm diode laser rescues cochlear synaptopathy after acoustic overexposure in rat. JOURNAL OF BIOPHOTONICS 2019; 12:e201900145. [PMID: 31240853 DOI: 10.1002/jbio.201900145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
A certain degree of noise can cause hearing problems without a permanent change in the hearing threshold, which is called hidden hearing loss and results from partial loss of auditory synapses. Photobiomodulation (PBM) enhances neural growth and connections in the peripheral nervous systems. In this study, we assessed whether PBM could rescue cochlear synaptopathy after acoustic overexposure in rat. PBM was performed for 7 days after noise exposure. The auditory brainstem responses (ABRs) were acquired before and after noise exposure using a tone and a paired-click stimulus. Auditory response to paired click sound with short time interval was performed to evaluate auditory temporal processing ability. In the result, hearing threshold recovered 2 weeks after noise exposure in both groups. Peak wave 1 amplitude of the ABR and ABR recovery threshold did not recover in the noise only group, whereas it fully recovered in the noise + PBM group. The number of synaptic ribbons was significantly different in the control and noise only groups, while there was no difference between the control and noise + PBM group. These results indicate that PBM rescued peak wave 1 amplitude and maintained the auditory temporal processing ability resulting from a loss of synaptic ribbons after acoustic overexposure.
Collapse
Affiliation(s)
- Jae-Hun Lee
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, South Korea
- Interdiscriplinary Program for Medical Laser, College of Medicine, Dankook University, Cheonan, South Korea
| | - Min Young Lee
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, South Korea
- Interdiscriplinary Program for Medical Laser, College of Medicine, Dankook University, Cheonan, South Korea
- Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, Cheonan, South Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, South Korea
- Interdiscriplinary Program for Medical Laser, College of Medicine, Dankook University, Cheonan, South Korea
- Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, Cheonan, South Korea
| | - Jae Yun Jung
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, South Korea
- Interdiscriplinary Program for Medical Laser, College of Medicine, Dankook University, Cheonan, South Korea
- Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, Cheonan, South Korea
| |
Collapse
|
9
|
Holt AG, Kühl A, Braun RD, Altschuler R. The rat as a model for studying noise injury and otoprotection. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3681. [PMID: 31795688 DOI: 10.1121/1.5131344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A major challenge for those studying noise-induced injury pre-clinically is the selection of an animal model. Noise injury models are particularly relevant in an age when people are constantly bombarded by loud noise due to occupation and/or recreation. The rat has been widely used for noise-related morphological, physiological, biochemical, and molecular assessment. Noise exposure resulting in a temporary (TTS) or permanent threshold shift (PTS) yields trauma in peripheral and central auditory related pathways. While the precise nature of noise-related injuries continues to be delineated, both PTS and TTS (with or without hidden hearing loss) result in homeostatic changes implicated in conditions such as tinnitus and hyperacusis. Compared to mice, rats generally tolerate exposure to loud sounds reasonably well, often without exhibiting other physical non-inner ear related symptoms such as death, loss of consciousness, or seizures [Skradski, Clark, Jiang, White, Fu, and Ptacek (2001). Neuron 31, 537-544; Faingold (2002). Hear. Res. 168, 223-237; Firstova, Abaimov, Surina, Poletaeva, Fedotova, and Kovalev (2012). Bull Exp. Biol. Med. 154, 196-198; De Sarro, Russo, Citraro, and Meldrum (2017). Epilepsy Behav. 71, 165-173]. This ability of the rat to thrive following noise exposure permits study of long-term effects. Like the mouse, the rat also offers a well-characterized genome allowing genetic manipulations (i.e., knock-out, viral-based gene expression modulation, and optogenetics). Rat models of noise-related injury also provide valuable information for understanding mechanistic changes to identify therapeutic targets for treatment. This article provides a framework for selection of the rat as a model for noise injury studies.
Collapse
Affiliation(s)
- Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - André Kühl
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Richard Altschuler
- Department of Otolaryngology; Cell and Developmental Biology, Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
10
|
Applications of photobiomodulation in hearing research: from bench to clinic. Biomed Eng Lett 2019; 9:351-358. [PMID: 31456894 DOI: 10.1007/s13534-019-00114-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/28/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is very common and economically burdensome. No accepted therapeutic modality for sensorineural hearing loss is yet available; most clinicians emphasize rehabilitation, placing hearing aids and cochlear implants. Photobiomodulation (PBM) employs light energy to enhance or modulate the activities of specific organs, and is a popular non-invasive therapy used to treat skin lesions and neurodegenerative disorders. Efforts to use PBM to improve hearing have been ongoing for several decades. Initial in vitro studies using cell lines and ex vivo culture techniques have now been supplanted by in vivo studies in animals; PBM protects the sensory epithelium and triggers neural regeneration. Many reports have used PBM to treat tinnitus. In this brief review, we introduce PBM applications in hearing research, helpful protocols, and relevant background literature.
Collapse
|
11
|
Chang SY, Park YH, Carpena NT, Pham TT, Chung PS, Jung JY, Lee MY. Photobiomodulation promotes adenoviral gene transduction in auditory cells. Lasers Med Sci 2018; 34:367-375. [PMID: 30105484 DOI: 10.1007/s10103-018-2605-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022]
Abstract
Gene therapy is the delivery of a therapeutic gene into target cells to treat disorders by replacing disease-causing mutated genes with healthy ones. Gene therapy of the inner ear has been recently described, with applications for sensorineural hearing loss. However, gene delivery to the location of the inner ear, and thus efficacy of therapy, is challenging. Photobiomodulation (PBM) with a low-level laser has been suggested to have a therapeutic effect and has the potential to augment gene therapy. To investigate whether PBM improves the rate of adenovirus (Ad)-mediated viral delivery, we compared low-level laser therapy (LLLT) and non-LLLT HEI-OC1 cells treated with an Ad viral vector carrying green fluorescent protein (GFP). Cultured HEI-OC1 cells were divided into six groups: no treatment control, LLLT only, 1 μL Ad-GFP, 3 μL Ad-GFP, 1 μL Ad-GFP + LLLT, and 3 μL Ad-GFP + LLLT (LLLT: 808 nm at 15 mW for 15 min). Cells were irradiated twice: at 2 h and again at 24 h. A nonparametric Mann-Whitney U test was used to statistically analyze differences between the control and treatment groups. The viral inoculations used in this study did not change the amount of viable HEI-OC1 cells (N = 4-8). The 1 μL Ad-GFP + LLLT and 3 μL Ad-GFP + LLLT groups showed an increased density of GFP-positive cells compared to 1 μL and 3 μL Ad-GFP cells (N = 5-8, 1 μL: p = 0.0159; 3 μL: p = 0.0168,). The quantitative analysis of the epifluorescence of the 1 μL Ad-GFP + LLLT, and 3 μL Ad-GFP + LLLT groups revealed increased GFP expression/cell compared to 1 μL and 3 μL Ad-GFP cells (N = 6-15, 1 μL: p = 0.0082; 3 μL: p = 0.0012). The RT-qPCR results were consistent (N = 4-5, p = 0.0159). These findings suggest that PBM may enhance the gene delivery of Ad-mediated viral transduction, and the combination of the two may be a promising tool for gene therapy for sensorineural hearing loss.
Collapse
Affiliation(s)
- So-Young Chang
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, South Korea
| | - Yong-Ho Park
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Nathaniel T Carpena
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, South Korea
| | - Tiffany T Pham
- Beckman Laser Institute, University of California Irvine, Irvine, CA, USA
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, South Korea.,Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, South Korea
| | - Jae Yun Jung
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, South Korea.,Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, South Korea
| | - Min Young Lee
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, South Korea. .,Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, South Korea.
| |
Collapse
|
12
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018; 94:199-212. [PMID: 29164625 PMCID: PMC5844808 DOI: 10.1111/php.12864] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/31/2017] [Indexed: 12/23/2022]
Abstract
Photobiomodulation (PBM) involves the use of red or near-infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat-gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Department of Dermatology, Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
13
|
Secondary Degeneration of Auditory Neurons after Topical Aminoglycoside Administration in a Gerbil Model. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9158187. [PMID: 29687008 PMCID: PMC5852872 DOI: 10.1155/2018/9158187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/29/2017] [Accepted: 01/09/2018] [Indexed: 01/20/2023]
Abstract
Hair cells in the cochlea can be damaged by various causes. Damaged hair cells can lead to additional destruction of parts of the auditory afferent pathway sequentially, which is called secondary degeneration. Recently, researches regarding cochlear implants have been actively carried out for clinical purposes; secondary degeneration in animals is a much more practical model for identifying the prognosis of cochlear implants. However, an appropriate model for this research is not established yet. Thus, we developed a secondary degeneration model using an ototoxic drug. 35 gerbils were separated into four different groups and kanamycin was applied via various approaches. ABR was measured several times after drug administration. SGCs were also counted to identify any secondary degeneration. The results showed that outer and inner HCs were damaged in all kanamycin-treated groups. Twelve weeks after kanamycin treatment, the round window membrane injection group showed severe subject differences in hair cells and SGC damage, whereas the gelfoam group showed consistent and severe damage in hair cells and SGCs. In this study, we successfully induced secondary degeneration in hair cells in a gerbil model. This model can be used for various purposes in the hearing research area either for treatment or for preservation.
Collapse
|
14
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 3194=3194# dgnj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
15
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and (select (case when (5719=8223) then null else ctxsys.drithsx.sn(1,5719) end) from dual) is null] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
16
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
17
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
18
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
19
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
20
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and make_set(2234=2234,4853)-- tppa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
21
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or updatexml(4295,concat(0x2e,0x717a717671,(select (elt(4295=4295,1))),0x71706a6271),3985)-- bssu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
22
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
23
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
24
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
25
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
26
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 5169=2257-- ejdi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
27
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 2019=2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
28
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 1705=('qzqvq'||(select case 1705 when 1705 then 1 else 0 end from rdb$database)||'qpjbq')-- qsrj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
29
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and extractvalue(6022,concat(0x5c,0x717a717671,(select (elt(6022=6022,1))),0x71706a6271))# igpm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
30
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
31
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 8779=2113# mdth] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
32
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 2341=9012# mbxq] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
33
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
34
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or not 9689=3416#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
35
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
36
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
37
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
38
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 or updatexml(4295,concat(0x2e,0x717a717671,(select (elt(4295=4295,1))),0x71706a6271),3985)# pcqv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
39
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
40
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
41
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
42
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
43
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 1705=('qzqvq'||(select case 1705 when 1705 then 1 else 0 end from rdb$database)||'qpjbq')# flsh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
44
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
45
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 rlike (select (case when (3831=3831) then 0x31302e313131312f7068702e3132383634 else 0x28 end))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
46
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and 1321=4667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
47
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
48
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
49
|
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|
50
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018. [DOI: 10.1111/php.12864 and extractvalue(6022,concat(0x5c,0x717a717671,(select (elt(6022=6022,1))),0x71706a6271))-- wonu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston MA
- Department of Dermatology Harvard Medical School Boston MA
- Harvard‐MIT Division of Health Sciences and Technology Cambridge MA
| |
Collapse
|