1
|
Gopalakrishnan V, Saxena P, Thakur P, Lipatov A, Sani RK. Impact of Graphene Layers on Genetic Expression and Regulation within Sulfate-Reducing Biofilms. Microorganisms 2024; 12:1759. [PMID: 39338434 PMCID: PMC11433944 DOI: 10.3390/microorganisms12091759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial adhesion and biofilm maturation is significantly influenced by surface properties, encompassing both bare surfaces and single or multi-layered coatings. Hence, there is an utmost interest in exploring the intricacies of gene regulation in sulfate-reducing bacteria (SRB) on copper and graphene-coated copper surfaces. In this study, Oleidesulfovibrio alaskensis G20 was used as the model SRB to elucidate the pathways that govern pivotal roles during biofilm formation on the graphene layers. Employing a potent reporter green fluorescent protein (GFP) tagged to O. alaskensis G20, the spatial structure of O. alaskensis G20 biofilm on copper foil (CuF), single-layer graphene-coated copper (Cu-GrI), and double-layer graphene-coated copper (Cu-GrII) surfaces was investigated. Biofilm formation on CuF, Cu-GrI, and Cu-GrII surfaces was quantified using CLSM z-stack images within COMSTAT v2 software. The results revealed that CuF, Cu-GrI, and Cu-GrII did not affect the formation of the GFP-tagged O. alaskensis G20 biofilm architecture. qPCR expression showed insignificant fold changes for outer membrane components regulating the quorum-sensing system, and global regulatory proteins between the uncoated and coated surfaces. Notably, a significant expression was observed within the sulfate reduction pathway confined to dissimilatory sulfite reductases on the Cu-GrII surface compared to the CuF and Cu-GrI surfaces.
Collapse
Affiliation(s)
- Vinoj Gopalakrishnan
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Alexey Lipatov
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| |
Collapse
|
2
|
Preparation and Electrochemical Properties of Functionalized Multi-Walled Carbon Nanotubes @ Carbon Quantum Dots @ Polyaniline Ternary Composite Electrode Materials. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Based on various carbon nano materials, the ternary composite functionalized carbon nanotubes (FMWCNTs) @ carbon quantum dots (CQDs) @ polyaniline (PANI) was prepared by in-situ polymerization and hydrothermal method. The carbon-based material was made into an electrode sheet. The morphology and microscopic nanostructures were characterized by FTIR, field emission scanning electron microscopy and field emission transmission electron microscopy. Cyclic voltammetry and the galvanostatic charge discharge method was adapted to study the electrochemical properties of these active materials. Our results showed that the specific capacitance of FMWCNTs @ CQDs @ PANI was as high as 534 F/g, while it was 362 F/g, 319 F/g and 279 F/g for PANI @ FMWCNTs, PANI @ CQDs and polyaniline. This means that the specific capacitance of FMWCNTs @ CQDs @ PANI is increased by 47.5%, 67.4% and 91.4% comparing with the capacitance of PANI @ FMWCNTs, PANI @ CQDs and polyaniline, respectively. Moreover, the specific capacitance retention rate of the ternary active electrode after 1000 times of constant current charge and discharge cycle reached 86%, while it was 60% for PANI @ FMWCNTs, 72% for PANI @ CQDs and 65% for polyaniline.
Collapse
|
3
|
Andriianova AN, Biglova YN, Mustafin AG. Effect of structural factors on the physicochemical properties of functionalized polyanilines. RSC Adv 2020; 10:7468-7491. [PMID: 35492197 PMCID: PMC9049894 DOI: 10.1039/c9ra08644g] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/29/2020] [Indexed: 01/06/2023] Open
Abstract
This review discusses the physical and physicochemical properties of polyaniline (PANI) derivatives. The most important methods for the preparation of functionalized polyanilines are presented. The presence of various substituents in its structure changes the polymer characteristics significantly due to steric and electronic effects of the functional groups. This review describes the relationship between the properties of functionalized polyanilines depending on the nature, number and position of the substituents at the aromatic ring.
Collapse
Affiliation(s)
- Anastasiia N Andriianova
- Ufa Institute of Chemistry, Russian Academy of Sciences 71 prosp. Oktyabrya 450054 Ufa Russian Federation
| | - Yuliya N Biglova
- Bashkir State University Z. Validi St, 32 Ufa 450076 Russian Federation
| | - Akhat G Mustafin
- Ufa Institute of Chemistry, Russian Academy of Sciences 71 prosp. Oktyabrya 450054 Ufa Russian Federation
| |
Collapse
|
4
|
Robertson J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Swift S. The antimicrobial action of polyaniline involves production of oxidative stress while functionalisation of polyaniline introduces additional mechanisms. PeerJ 2018; 6:e5135. [PMID: 29967756 PMCID: PMC6026458 DOI: 10.7717/peerj.5135] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/08/2018] [Indexed: 12/31/2022] Open
Abstract
Polyaniline (PANI) and functionalised polyanilines (fPANI) are novel antimicrobial agents whose mechanism of action was investigated. Escherichia coli single gene deletion mutants revealed that the antimicrobial mechanism of PANI likely involves production of hydrogen peroxide while homopolymer poly(3-aminobenzoic acid), P3ABA, used as an example of a fPANI, disrupts metabolic and respiratory machinery, by targeting ATP synthase and causes acid stress. PANI was more active against E. coli in aerobic, compared to anaerobic, conditions, while this was apparent for P3ABA only in rich media. Greater activity in aerobic conditions suggests involvement of reactive oxygen species. P3ABA treatment causes an increase in intracellular free iron, which is linked to perturbation of metabolic enzymes and could promote reactive oxygen species production. Addition of exogenous catalase protected E. coli from PANI antimicrobial action; however, this was not apparent for P3ABA treated cells. The results presented suggest that PANI induces production of hydrogen peroxide, which can promote formation of hydroxyl radicals causing biomolecule damage and potentially cell death. P3ABA is thought to act as an uncoupler by targeting ATP synthase resulting in a futile cycle, which precipitates dysregulation of iron homeostasis, oxidative stress, acid stress, and potentially the fatal loss of proton motive force.
Collapse
Affiliation(s)
- Julia Robertson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | | | | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Investigation of Polyaniline and a Functionalised Derivative as Antimicrobial Additives to Create Contamination Resistant Surfaces. MATERIALS 2018; 11:ma11030436. [PMID: 29547572 PMCID: PMC5873015 DOI: 10.3390/ma11030436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
Antimicrobial surfaces can be applied to break transmission pathways in hospitals. Polyaniline (PANI) and poly(3-aminobenzoic acid) (P3ABA) are novel antimicrobial agents with potential as non-leaching additives to provide contamination resistant surfaces. The activity of PANI and P3ABA were investigated in suspension and as part of absorbent and non-absorbent surfaces. The effect of inoculum size and the presence of organic matter on surface activity was determined. PANI and P3ABA both demonstrated bactericidal activity against Escherichia coli and Staphylococcus aureus in suspension and as part of an absorbent surface. Only P3ABA showed antimicrobial activity in non-absorbent films. The results that are presented in this work support the use of P3ABA to create contamination resistant surfaces.
Collapse
|