1
|
Dyall-Smith M, Pfeiffer F. Global Distribution and Diversity of Haloarchaeal pL6-Family Plasmids. Genes (Basel) 2024; 15:1123. [PMID: 39336713 PMCID: PMC11431627 DOI: 10.3390/genes15091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Australian isolates of Haloquadratum walsbyi, a square-shaped haloarchaeon, often harbor small cryptic plasmids of the pL6-family, approximately 6 kb in size, and five examples have been previously described. These plasmids exhibit a highly conserved gene arrangement and encode replicases similar to those of betapleolipoviruses. To assess their global distribution and recover more examples for analysis, fifteen additional plasmids were reconstructed from the metagenomes of seven hypersaline sites across four countries: Argentina, Australia, Puerto Rico, and Spain. Including the five previously described plasmids, the average plasmid size is 6002 bp, with an average G+C content of 52.5%. The tetramers GGCC and CTAG are either absent or significantly under-represented, except in the two plasmids with the highest %G+C. All plasmids share a similar arrangement of genes organized as outwardly facing replication and ATPase modules, but variations were observed in some core genes, such as F2, and some plasmids had acquired accessory genes. Two plasmids, pCOLO-c1 and pISLA-c6, shared 92.7% nt identity despite originating from Argentina and Spain, respectively. Numerous metagenomic CRISPR spacers matched sequences in the fifteen reconstructed plasmids, indicating frequent invasion of haloarchaea. Spacers could be assigned to haloarchaeal genera by mapping their associated direct repeats (DR), with half of these matching Haloquadratum. Finally, strand-specific metatranscriptome (RNA-seq) data could be used to demonstrate the active transcription of two pL6-family plasmids, including antisense transcripts.
Collapse
Affiliation(s)
- Mike Dyall-Smith
- Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia;
- Computational Systems Biochemistry, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Friedhelm Pfeiffer
- Computational Systems Biochemistry, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
2
|
Abstract
The brines of natural salt lakes with total salt concentrations exceeding 30% are often colored red by dense communities of halophilic microorganisms. Such red brines are found in the north arm of Great Salt Lake, Utah, in the alkaline hypersaline lakes of the African Rift Valley, and in the crystallizer ponds of coastal and inland salterns where salt is produced by evaporation of seawater or some other source of saline water. Red blooms were also reported in the Dead Sea in the past. Different types of pigmented microorganisms may contribute to the coloration of the brines. The most important are the halophilic archaea of the class Halobacteria that contain bacterioruberin carotenoids as well as bacteriorhodopsin and other retinal pigments, β-carotene-rich species of the unicellular green algal genus Dunaliella and bacteria of the genus Salinibacter (class Rhodothermia) that contain the carotenoid salinixanthin and the retinal protein xanthorhodopsin. Densities of prokaryotes in red brines often exceed 2-3×107 cells/mL. I here review the information on the biota of the red brines, the interactions between the organisms present, as well as the possible roles of the red halophilic microorganisms in the salt production process and some applied aspects of carotenoids and retinal proteins produced by the different types of halophiles inhabiting the red brines.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Uritskiy G, DiRuggiero J. Applying Genome-Resolved Metagenomics to Deconvolute the Halophilic Microbiome. Genes (Basel) 2019; 10:genes10030220. [PMID: 30875864 PMCID: PMC6471235 DOI: 10.3390/genes10030220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
In the past decades, the study of microbial life through shotgun metagenomic sequencing has rapidly expanded our understanding of environmental, synthetic, and clinical microbial communities. Here, we review how shotgun metagenomics has affected the field of halophilic microbial ecology, including functional potential reconstruction, virus–host interactions, pathway selection, strain dispersal, and novel genome discoveries. However, there still remain pitfalls and limitations from conventional metagenomic analysis being applied to halophilic microbial communities. Deconvolution of halophilic metagenomes has been difficult due to the high G + C content of these microbiomes and their high intraspecific diversity, which has made both metagenomic assembly and binning a challenge. Halophiles are also underrepresented in public genome databases, which in turn slows progress. With this in mind, this review proposes experimental and analytical strategies to overcome the challenges specific to the halophilic microbiome, from experimental designs to data acquisition and the computational analysis of metagenomic sequences. Finally, we speculate about the potential applications of other next-generation sequencing technologies in halophilic communities. RNA sequencing, long-read technologies, and chromosome conformation assays, not initially intended for microbiomes, are becoming available in the study of microbial communities. Together with recent analytical advancements, these new methods and technologies have the potential to rapidly advance the field of halophile research.
Collapse
Affiliation(s)
- Gherman Uritskiy
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
4
|
Plominsky AM, Henríquez-Castillo C, Delherbe N, Podell S, Ramirez-Flandes S, Ugalde JA, Santibañez JF, van den Engh G, Hanselmann K, Ulloa O, De la Iglesia R, Allen EE, Trefault N. Distinctive Archaeal Composition of an Artisanal Crystallizer Pond and Functional Insights Into Salt-Saturated Hypersaline Environment Adaptation. Front Microbiol 2018; 9:1800. [PMID: 30154761 PMCID: PMC6102401 DOI: 10.3389/fmicb.2018.01800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/17/2018] [Indexed: 11/23/2022] Open
Abstract
Hypersaline environments represent some of the most challenging settings for life on Earth. Extremely halophilic microorganisms have been selected to colonize and thrive in these extreme environments by virtue of a broad spectrum of adaptations to counter high salinity and osmotic stress. Although there is substantial data on microbial taxonomic diversity in these challenging ecosystems and their primary osmoadaptation mechanisms, less is known about how hypersaline environments shape the genomes of microbial inhabitants at the functional level. In this study, we analyzed the microbial communities in five ponds along the discontinuous salinity gradient from brackish to salt-saturated environments and sequenced the metagenome of the salt (halite) precipitation pond in the artisanal Cáhuil Solar Saltern system. We combined field measurements with spectrophotometric pigment analysis and flow cytometry to characterize the microbial ecology of the pond ecosystems, including primary producers and applied metagenomic sequencing for analysis of archaeal and bacterial taxonomic diversity of the salt crystallizer harvest pond. Comparative metagenomic analysis of the Cáhuil salt crystallizer pond against microbial communities from other salt-saturated aquatic environments revealed a dominance of the archaeal genus Halorubrum and showed an unexpectedly low abundance of Haloquadratum in the Cáhuil system. Functional comparison of 26 hypersaline microbial metagenomes revealed a high proportion of sequences associated with nucleotide excision repair, helicases, replication and restriction-methylation systems in all of them. Moreover, we found distinctive functional signatures between the microbial communities from salt-saturated (>30% [w/v] total salinity) compared to sub-saturated hypersaline environments mainly due to a higher representation of sequences related to replication, recombination and DNA repair in the former. The current study expands our understanding of the diversity and distribution of halophilic microbial populations inhabiting salt-saturated habitats and the functional attributes that sustain them.
Collapse
Affiliation(s)
- Alvaro M Plominsky
- Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Concepción, Chile.,Instituto Milenio de Oceanografía, Concepción, Chile
| | - Carlos Henríquez-Castillo
- Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Concepción, Chile.,Instituto Milenio de Oceanografía, Concepción, Chile
| | - Nathalie Delherbe
- Biology Department, Cell and Molecular Biology Joint Doctoral Program with UC San Diego, San Diego State University, San Diego, CA, United States
| | - Sheila Podell
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Salvador Ramirez-Flandes
- Instituto Milenio de Oceanografía, Concepción, Chile.,Programa de Doctorado en Ingeniería de Sistemas Complejos, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Juan A Ugalde
- uBiome, Inc., San Francisco, CA, United States.,Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Juan F Santibañez
- Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Concepción, Chile
| | | | - Kurt Hanselmann
- Department of Earth Sciences, ETH Zürich, Zurich, Switzerland
| | - Osvaldo Ulloa
- Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Concepción, Chile.,Instituto Milenio de Oceanografía, Concepción, Chile
| | - Rodrigo De la Iglesia
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology and Environment, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| |
Collapse
|
5
|
Moller AG, Liang C. MetaCRAST: reference-guided extraction of CRISPR spacers from unassembled metagenomes. PeerJ 2017; 5:e3788. [PMID: 28894651 PMCID: PMC5592083 DOI: 10.7717/peerj.3788] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) systems are the adaptive immune systems of bacteria and archaea against viral infection. While CRISPRs have been exploited as a tool for genetic engineering, their spacer sequences can also provide valuable insights into microbial ecology by linking environmental viruses to their microbial hosts. Despite this importance, metagenomic CRISPR detection remains a major challenge. Here we present a reference-guided CRISPR spacer detection tool (Metagenomic CRISPR Reference-Aided Search Tool-MetaCRAST) that constrains searches based on user-specified direct repeats (DRs). These DRs could be expected from assembly or taxonomic profiles of metagenomes. We compared the performance of MetaCRAST to those of two existing metagenomic CRISPR detection tools-Crass and MinCED-using both real and simulated acid mine drainage (AMD) and enhanced biological phosphorus removal (EBPR) metagenomes. Our evaluation shows MetaCRAST improves CRISPR spacer detection in real metagenomes compared to the de novo CRISPR detection methods Crass and MinCED. Evaluation on simulated metagenomes show it performs better than de novo tools for Illumina metagenomes and comparably for 454 metagenomes. It also has comparable performance dependence on read length and community composition, run time, and accuracy to these tools. MetaCRAST is implemented in Perl, parallelizable through the Many Core Engine (MCE), and takes metagenomic sequence reads and direct repeat queries (FASTA or FASTQ) as input. It is freely available for download at https://github.com/molleraj/MetaCRAST.
Collapse
Affiliation(s)
- Abraham G Moller
- Department of Biology, Miami University, Oxford, OH, United States of America
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, United States of America
| |
Collapse
|