1
|
Seo PW, Hofmann A, Kim JH, Hwangbo SA, Kim JH, Kim JW, Huynh TYL, Choy HE, Kim SJ, Lee J, Lee JO, Jin KS, Park SY, Kim JS. Structural features of a minimal intact methyltransferase of a type I restriction-modification system. Int J Biol Macromol 2022; 208:381-389. [PMID: 35337914 DOI: 10.1016/j.ijbiomac.2022.03.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/05/2022]
Abstract
Type I restriction-modification enzymes are oligomeric proteins composed of methylation (M), DNA sequence-recognition (S), and restriction (R) subunits. The different bipartite DNA sequences of 2-4 consecutive bases are recognized by two discerned target recognition domains (TRDs) located at the two-helix bundle of the two conserved regions (CRs). Two M-subunits and a single S-subunit form an oligomeric protein that functions as a methyltransferase (M2S1 MTase). Here, we present the crystal structure of the intact MTase from Vibrio vulnificus YJ016 in complex with the DNA-mimicking Ocr protein and the S-adenosyl-L-homocysteine (SAH). This MTase includes the M-domain with a helix tail (M-tail helix) and the S1/2-domain of a TRD and a CR α-helix. The Ocr binds to the cleft of the TRD surface and SAH is located in the pocket within the M-domain. The solution- and negative-staining electron microscopy-based reconstructed (M1S1/2)2 structure reveals a symmetric (S1/2)2 assembly using two CR-helices and two M-tail helices as a pivot, which is plausible for recognizing two DNA regions of same sequence. The conformational flexibility of the minimal M1S1/2 MTase dimer indicates a particular state resembling the structure of M2S1 MTases.
Collapse
Affiliation(s)
- Pil-Won Seo
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia; Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 95326 Kulmbach, Germany
| | - Jun-Ha Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Kumoh National Institute of Technology, 61, Daehak-ro, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Seung-A Hwangbo
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Life Sciences and Institute of Membrane Proteins, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jun-Hong Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji-Won Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Thi Yen Ly Huynh
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyon E Choy
- Department of Microbiology, Basic Medical Research Building, Chonnam National University Medical College, Hwasun, Jeonnam 58128, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jimin Lee
- Department of Life Sciences and Institute of Membrane Proteins, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jie-Oh Lee
- Department of Life Sciences and Institute of Membrane Proteins, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Suk-Youl Park
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Sinha D, Bialevich V, Shamayeva K, Guzanova A, Sisakova A, Csefalvay E, Reha D, Krejci L, Carey J, Weiserova M, Ettrich R. A residue of motif III positions the helicase domains of motor subunit HsdR in restriction-modification enzyme EcoR124I. J Mol Model 2018; 24:176. [PMID: 29943199 DOI: 10.1007/s00894-018-3722-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/15/2018] [Indexed: 11/27/2022]
Abstract
Type I restriction-modification enzymes differ significantly from the type II enzymes commonly used as molecular biology reagents. On hemi-methylated DNAs type I enzymes like the EcoR124I restriction-modification complex act as conventional adenine methylases at their specific target sequences, but unmethylated targets induce them to translocate thousands of base pairs through the stationary enzyme before cleaving distant sites nonspecifically. EcoR124I is a superfamily 2 DEAD-box helicase like eukaryotic double-strand DNA translocase Rad54, with two RecA-like helicase domains and seven characteristic sequence motifs that are implicated in translocation. In Rad54 a so-called extended region adjacent to motif III is involved in ATPase activity. Although the EcoR124I extended region bears sequence and structural similarities with Rad54, it does not influence ATPase or restriction activity as shown in this work, but mutagenesis of the conserved glycine residue of its motif III does alter ATPase and DNA cleavage activity. Through the lens of molecular dynamics, a full model of HsdR of EcoR124I based on available crystal structures allowed interpretation of functional effects of mutants in motif III and its extended region. The results indicate that the conserved glycine residue of motif III has a role in positioning the two helicase domains.
Collapse
Affiliation(s)
- Dhiraj Sinha
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic
| | - Vitali Bialevich
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic
| | - Katsiaryna Shamayeva
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic
| | - Alena Guzanova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Praha 4, Czech Republic
| | - Alexandra Sisakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 5/A7, 625 00, Brno, Czech Republic
| | - Eva Csefalvay
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic
| | - David Reha
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic.,Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic
| | - Lumir Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 5/A7, 625 00, Brno, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jannette Carey
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic.,Chemistry Department, Princeton University, Princeton, NJ, 08544-1009, USA
| | - Marie Weiserova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Praha 4, Czech Republic
| | - Rüdiger Ettrich
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic. .,College of Biomedical Sciences, Larkin University, 18301 North Miami Avenue, Miami, FL, 33169, USA.
| |
Collapse
|