1
|
Yin R, Ke J, Zhao M, Ding Y, Li W, Li M, Hu L, Dai X, Hong G. Synaptotagmin-1 antagonizes paraquat intracellular accumulation and nephrocyte toxicity by up-regulating SERBP1/GLUT2 expression. Chem Biol Interact 2024; 400:111165. [PMID: 39059605 DOI: 10.1016/j.cbi.2024.111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Acute kidney injury (AKI) is common and an independent risk factor for mortality in patients with paraquat (PQ) poisoning. Currently, no specific antidote is available. Synaptotagmin-1 (SYT1) has been identified as a key protein that facilitates PQ efflux in PQ-resistant A549 cells, thereby preventing PQ-induced lung injury. However, the protective effect of STY1 on PQ-induced AKI remains to be elucidated. This study exposed human kidney 2 (HK-2) cells overexpressing SYT1 to PQ. These cells exhibited significantly lower levels of growth inhibition, reactive oxygen species production, early apoptosis, and PQ accumulation compared to the parent HK-2 cells. Transcriptomic screening and Western blot analysis revealed that SYT1 overexpression significantly promoted the expression of glucose transporter 2 (GLUT2). Inhibition of GLUT2 completely abolished the protective effects of SYT1 overexpression in HK-2 cells and restored intracellular PQ concentrations. Further immunoprecipitation-shotgun and RNA interference experiments revealed that SYT1 binds to and stabilizes the protein SERPINE1 mRNA-binding protein 1 (SERBP1), enhancing the stability of GLUT2 mRNA and its protein levels. In summary, SYT1 antagonizes PQ intracellular accumulation and prevents nephrocyte toxicity by up-regulating SERBP1/GLUT2 expression. This study identifies a potential target for the treatment of PQ-induced AKI.
Collapse
Affiliation(s)
- Ran Yin
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Medical University, Wenzhou, 325000, China
| | - Jingjing Ke
- Wenzhou Medical University, Wenzhou, 325000, China; Emergency Department, Taizhou First People's Hospital, Taizhou, 318020, China
| | - Mingming Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Medical University, Wenzhou, 325000, China
| | - Yitian Ding
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Medical University, Wenzhou, 325000, China
| | - Wenwen Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mengxuan Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Medical University, Wenzhou, 325000, China
| | - Lufeng Hu
- Pharmacy Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaoqin Dai
- Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Guangliang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
2
|
Wang X, Yu D, Wang H, Lei Z, Zhai Y, Sun M, Chen S, Yin P. Rab3 and synaptotagmin proteins in the regulation of vesicle fusion and neurotransmitter release. Life Sci 2022; 309:120995. [PMID: 36167148 DOI: 10.1016/j.lfs.2022.120995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
Abstract
Ca2+-triggered neurotransmitter release involves complex regulatory mechanisms, including a series of protein-protein interactions. Three proteins, synaptobrevin (VAMP), synaptosomal-associated protein of 25kDa (SNAP-25) and syntaxin, constitute the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core complex that plays key roles in controlling vesicle fusion and exocytosis. Many other proteins participate in the regulation of the processes via direct and/or indirect interaction with the SNARE complex. Although much effort has been made, the regulatory mechanism for exocytosis is still not completely clear. Accumulated evidence indicates that the small GTPase Rab3 and synaptotagmin proteins play important regulatory roles during vesicle fusion and neurotransmitter release. This review outlines our present understanding of the two regulatory proteins, with the focus on the interaction of Rab3 with synaptotagmin in the regulatory process.
Collapse
Affiliation(s)
- Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Dianmei Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Minlu Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Panfeng Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
3
|
Tang X, Yu D, Wang H, Meng W, Lei Z, Zhai Y, Wang Y, Wang X. Biochemical and cytotoxic evaluation of latroeggtoxin-VI against PC12 cells. J Biochem Mol Toxicol 2021; 35:e22825. [PMID: 34047418 DOI: 10.1002/jbt.22825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/27/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023]
Abstract
Latroeggtoxin-VI (LETX-VI) is a peptide neurotoxin discovered from Latrodectus tredecimguttatus eggs. In the current study, the action features of the neurotoxin on PC12 cells were systematically investigated. LETX-VI could promote dopamine release from PC12 cells in the absence and presence of Ca2+, involving an even more complex action mechanism in the presence of Ca2+ and when the treatment time was longer. Although LETX-VI enchanced the autophagy and secretion activity in PC 12 cells, it showed no remarkable influence on the proliferation, cell cycle, apoptosis and ultrastructure of the cells. Pulldown combined with CapLC-MS/MS analysis suggested that LETX-VI affected PC12 cells by interacting with multiple proteins involved in the metabolism, transport, and release of neurotransmitters, particularly dopamine. The low cytotoxicity and effective regulatory action of LETX-VI on PC12 cells suggest the potential of the active peptide in the development of drugs for the treatment of some dopamine-related psychotic diseases and cancers.
Collapse
Affiliation(s)
- Xiaochao Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dianmei Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wenwen Meng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Ying Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|