1
|
Yuan H, Cai P, Zhang W, Jin S, Jiang S, Xiong Y, Gong Y, Qiao H, Fu H. Identification of genes regulated by 20-Hydroxyecdysone in Macrobrachium nipponense using comparative transcriptomic analysis. BMC Genomics 2024; 25:35. [PMID: 38183039 PMCID: PMC10768235 DOI: 10.1186/s12864-023-09927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Macrobrachium nipponense is a freshwater prawn of economic importance in China. Its reproductive molt is crucial for seedling rearing and directly impacts the industry's economic efficiency. 20-hydroxyecdysone (20E) controls various physiological behaviors in crustaceans, among which is the initiation of molt. Previous studies have shown that 20E plays a vital role in regulating molt and oviposition in M. nipponense. However, research on the molecular mechanisms underlying the reproductive molt and role of 20E in M. nipponense is still limited. RESULTS A total of 240.24 Gb of data was obtained from 18 tissue samples by transcriptome sequencing, with > 6 Gb of clean reads per sample. The efficiency of comparison with the reference transcriptome ranged from 87.05 to 92.48%. A total of 2532 differentially expressed genes (DEGs) were identified. Eighty-seven DEGs associated with molt or 20E were screened in the transcriptomes of the different tissues sampled in both the experimental and control groups. The reliability of the RNA sequencing data was confirmed using Quantitative Real-Time PCR. The expression levels of the eight strong candidate genes showed significant variation at the different stages of molt. CONCLUSION This study established the first transcriptome library for the different tissues of M. nipponense in response to 20E and demonstrated the dominant role of 20E in the molting process of this species. The discovery of a large number of 20E-regulated strong candidate DEGs further confirms the extensive regulatory role of 20E and provides a foundation for the deeper understanding of its molecular regulatory mechanisms.
Collapse
Affiliation(s)
- Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Pengfei Cai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Hui Qiao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
2
|
Rahi ML, Mather PB, de Bello Cioffi M, Ezaz T, Hurwood DA. Genomic Basis of Freshwater Adaptation in the Palaemonid Prawn Genus Macrobrachium: Convergent Evolution Following Multiple Independent Colonization Events. J Mol Evol 2023; 91:976-989. [PMID: 38010517 DOI: 10.1007/s00239-023-10149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Adaptation to different salinity environments can enhance morphological and genomic divergence between related aquatic taxa. Species of prawns in the genus Macrobrachium naturally inhabit different osmotic niches and possess distinctive lifecycle traits associated with salinity tolerance. This study was conducted to investigate the patterns of adaptive genomic divergence during freshwater colonization in 34 Macrobrachium species collected from four continents; Australia, Asia, North and South America. Genotyping-by-sequencing (GBS) technique identified 5018 loci containing 82,636 single nucleotide polymorphisms (SNPs) that were used to reconstruct a phylogenomic tree. An additional phylogeny was reconstructed based on 43 candidate genes, previously identified as being potentially associated with freshwater adaptation. Comparison of the two phylogenetic trees revealed contrasting topologies. The GBS tree indicated multiple independent continent-specific invasions into freshwater by Macrobrachium lineages following common marine ancestry, as species with abbreviated larval development (ALD), i.e., species having a full freshwater life history, appeared reciprocally monophyletic within each continent. In contrast, the candidate gene tree showed convergent evolution for all ALD species worldwide, forming a single, well-supported clade. This latter pattern is likely the result of common evolutionary pressures selecting key mutations favored in continental freshwater habitats Results suggest that following multiple independent invasions into continental freshwaters at different evolutionary timescales, Macrobrachium taxa experienced adaptive genomic divergence, and in particular, convergence in the same genomic regions with parallel shifts in specific conserved phenotypic traits, such as evolution of larger eggs with abbreviated larval developmental.
Collapse
Affiliation(s)
- Md Lifat Rahi
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh.
| | - Peter B Mather
- Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Marcelo de Bello Cioffi
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, SP, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology (IAE), University of Canberra (UC), Canberra, ACT, 2617, Australia
| | - David A Hurwood
- Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| |
Collapse
|
3
|
Rahi ML, Azad KN, Tabassum M, Irin HH, Hossain KS, Aziz D, Moshtaghi A, Hurwood DA. Effects of Salinity on Physiological, Biochemical and Gene Expression Parameters of Black Tiger Shrimp ( Penaeus monodon): Potential for Farming in Low-Salinity Environments. BIOLOGY 2021; 10:biology10121220. [PMID: 34943135 PMCID: PMC8698961 DOI: 10.3390/biology10121220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023]
Abstract
Salinity is one of the most important abiotic factors affecting growth, metabolism, immunity and survival of aquatic species in farming environments. As a euryhaline species, the black tiger shrimp (Penaeus monodon) can tolerate a wide range of salinity levels and is farmed between brackish to marine water conditions. The current study tested the effects of six different salinity levels (0‱, 2.5‱, 5‱, 10‱, 20‱ and 30‱) on the selected physiological, biochemical and genetic markers (individual changes in the expression pattern of selected candidate genes) in the black tiger shrimp. Experimental salinity levels significantly affected growth and survival performance (p < 0.05); the highest levels of growth and survival performance were observed at the control (20‱) salinity. Salinity reductions significantly increased free fatty acid (FFA), but reduced free amino acid (FAA) levels. Lower salinity treatments (0-10‱) significantly reduced hemolymph osmolality levels while 30‱ significantly increased osmolality levels. The five different salinity treatments increased the expression of osmoregulatory and hemolymph regulatory genes by 1.2-8-fold. In contrast, 1.2-1.6-fold lower expression levels were observed at the five salinity treatments for growth (alpha amylase) and immunity (toll-like receptor) genes. O2 consumption, glucose and serotonin levels, and expression of osmoregulatory genes showed rapid increase initially with salinity change, followed by reducing trend and stable patterns from the 5th day to the end. Hemocyte counts, expression of growth and immunity related genes showed initial decreasing trends, followed by an increasing trend and finally stability from 20th day to the end. Results indicate the farming potential of P. monodon at low salinity environments (possibly at freshwater) by proper acclimation prior to stocking with minimal effects on production performance.
Collapse
Affiliation(s)
- Md. Lifat Rahi
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh; (M.L.R.); (K.N.A.); (M.T.); (H.H.I.); (K.S.H.)
| | - Khairun Naher Azad
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh; (M.L.R.); (K.N.A.); (M.T.); (H.H.I.); (K.S.H.)
| | - Maliha Tabassum
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh; (M.L.R.); (K.N.A.); (M.T.); (H.H.I.); (K.S.H.)
| | - Hasna Hena Irin
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh; (M.L.R.); (K.N.A.); (M.T.); (H.H.I.); (K.S.H.)
| | - Kazi Sabbir Hossain
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh; (M.L.R.); (K.N.A.); (M.T.); (H.H.I.); (K.S.H.)
| | - Dania Aziz
- Department of Aquaculture, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang 43400, Malaysia
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), University Putra Malaysia (UPM), Port Dickson 70150, Malaysia; (A.M.); (D.A.H.)
- Correspondence:
| | - Azam Moshtaghi
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), University Putra Malaysia (UPM), Port Dickson 70150, Malaysia; (A.M.); (D.A.H.)
| | - David A Hurwood
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), University Putra Malaysia (UPM), Port Dickson 70150, Malaysia; (A.M.); (D.A.H.)
| |
Collapse
|
4
|
Maraschi AC, Faria SC, McNamara JC. Salt transport by the gill Na -K -2Cl symporter in palaemonid shrimps: exploring physiological, molecular and evolutionary landscapes. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110968. [DOI: 10.1016/j.cbpa.2021.110968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
|
5
|
Mantovani M, McNamara JC. Contrasting strategies of osmotic and ionic regulation in freshwater crabs and shrimps: gene expression of gill ion transporters. J Exp Biol 2021; 224:jeb233890. [PMID: 33443071 DOI: 10.1242/jeb.233890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
Owing to their extraordinary niche diversity, the Crustacea are ideal for comprehending the evolution of osmoregulation. The processes that effect systemic hydro-electrolytic homeostasis maintain hemolymph ionic composition via membrane transporters located in highly specialized gill ionocytes. We evaluated physiological and molecular hyper- and hypo-osmoregulatory mechanisms in two phylogenetically distant, freshwater crustaceans, the crab Dilocarcinus pagei and the shrimp Macrobrachium jelskii, when osmotically challenged for up to 10 days. When in distilled water, D. pagei survived without mortality, hemolymph osmolality and [Cl-] increased briefly, stabilizing at initial values, while [Na+] decreased continually. Expression of gill V-type H+-ATPase (V-ATPase), Na+/K+-ATPase and Na+/K+/2Cl- symporter genes was unchanged. In M. jelskii, hemolymph osmolality, [Cl-] and [Na+] decreased continually for 12 h, the shrimps surviving only around 15-24 h exposure. Gill transporter gene expression increased 2- to 5-fold. After 10 days exposure to brackish water (25‰S), D. pagei was isosmotic, iso-chloremic and iso-natriuremic. Gill V-ATPase expression decreased while Na+/K+-ATPase and Na+/K+/2Cl- symporter expression was unchanged. In M. jelskii (20‰S), hemolymph was hypo-regulated, particularly [Cl-]. Transporter expression initially increased 3- to 12-fold, declining to control values. Gill V-ATPase expression underlies the ability of D. pagei to survive in fresh water while V-ATPase, Na+/K+-ATPase and Na+/K+/2Cl- symporter expression enables M. jelskii to confront hyper/hypo-osmotic challenges. These findings reveal divergent responses in two unrelated crustaceans inhabiting a similar osmotic niche. While D. pagei does not secrete salt, tolerating elevated cellular isosmoticity, M. jelskii exhibits clear hypo-osmoregulatory ability. Each species has evolved distinct strategies at the transcriptional and systemic levels during its adaptation to fresh water.
Collapse
Affiliation(s)
- Milene Mantovani
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - John Campbell McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| |
Collapse
|
6
|
Rahi ML, Mather PB, Hurwood DA. Do plasticity in gene expression and physiological responses in Palaemonid prawns facilitate adaptive response to different osmotic challenges? Comp Biochem Physiol A Mol Integr Physiol 2021; 251:110810. [DOI: 10.1016/j.cbpa.2020.110810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
|
7
|
Schneider K, White TJ, Mitchell S, Adams CE, Reeve R, Elmer KR. The pitfalls and virtues of population genetic summary statistics: Detecting selective sweeps in recent divergences. J Evol Biol 2020; 34:893-909. [DOI: 10.1111/jeb.13738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Kevin Schneider
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Tom J. White
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Sonia Mitchell
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Colin E. Adams
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
- Scottish Centre for Ecology and the Natural Environment Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Richard Reeve
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Kathryn R. Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| |
Collapse
|
8
|
Kenny NJ, Plese B, Riesgo A, Itskovich VB. Symbiosis, Selection, and Novelty: Freshwater Adaptation in the Unique Sponges of Lake Baikal. Mol Biol Evol 2019; 36:2462-2480. [PMID: 31236592 PMCID: PMC6805232 DOI: 10.1093/molbev/msz151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022] Open
Abstract
Freshwater sponges (Spongillida) are a unique lineage of demosponges that secondarily colonized lakes and rivers and are now found ubiquitously in these ecosystems. They developed specific adaptations to freshwater systems, including the ability to survive extreme thermal ranges, long-lasting dessication, anoxia, and resistance to a variety of pollutants. Although spongillids have colonized all freshwater systems, the family Lubomirskiidae is endemic to Lake Baikal and plays a range of key roles in this ecosystem. Our work compares the genomic content and microbiome of individuals of three species of the Lubomirskiidae, providing hypotheses for how molecular evolution has allowed them to adapt to their unique environments. We have sequenced deep (>92% of the metazoan "Benchmarking Universal Single-Copy Orthologs" [BUSCO] set) transcriptomes from three species of Lubomirskiidae and a draft genome resource for Lubomirskia baikalensis. We note Baikal sponges contain unicellular algal and bacterial symbionts, as well as the dinoflagellate Gyrodinium. We investigated molecular evolution, gene duplication, and novelty in freshwater sponges compared with marine lineages. Sixty one orthogroups have consilient evidence of positive selection. Transporters (e.g., zinc transporter-2), transcription factors (aristaless-related homeobox), and structural proteins (e.g. actin-3), alongside other genes, are under strong evolutionary pressure in freshwater, with duplication driving novelty across the Spongillida, but especially in the Lubomirskiidae. This addition to knowledge of freshwater sponge genetics provides a range of tools for understanding the molecular biology and, in the future, the ecology (e.g., colonization and migration patterns) of these key species.
Collapse
Affiliation(s)
- Nathan J Kenny
- Life Sciences Department, The Natural History Museum, London, United Kingdom
| | - Bruna Plese
- Life Sciences Department, The Natural History Museum, London, United Kingdom
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Riesgo
- Life Sciences Department, The Natural History Museum, London, United Kingdom
| | - Valeria B Itskovich
- Limnological Institute, Siberian Branch of the Russian Academy of Science, Irkutsk, Russia
| |
Collapse
|
9
|
Rahi ML, Mather PB, Ezaz T, Hurwood DA. The Molecular Basis of Freshwater Adaptation in Prawns: Insights from Comparative Transcriptomics of Three Macrobrachium Species. Genome Biol Evol 2019; 11:1002-1018. [PMID: 30840062 PMCID: PMC6450038 DOI: 10.1093/gbe/evz045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2019] [Indexed: 12/17/2022] Open
Abstract
Elucidating the molecular basis of adaptation to different environmental conditions is important because adaptive ability of a species can shape its distribution, influence speciation, and also drive a variety of evolutionary processes. For crustaceans, colonization of freshwater habitats has significantly impacted diversity, but the molecular basis of this process is poorly understood. In the current study, we examined three prawn species from the genus Macrobrachium (M. australiense, M. tolmerum, and M. novaehollandiae) to better understand the molecular basis of freshwater adaptation using a comparative transcriptomics approach. Each of these species naturally inhabit environments with different salinity levels; here, we exposed them to the same experimental salinity conditions (0‰ and 15‰), to compare expression patterns of candidate genes that previously have been shown to influence phenotypic traits associated with freshwater adaptation (e.g., genes associated with osmoregulation). Differential gene expression analysis revealed 876, 861, and 925 differentially expressed transcripts under the two salinities for M. australiense, M. tolmerum, and M. novaehollandiae, respectively. Of these, 16 were found to be unannotated novel transcripts and may be taxonomically restricted or orphan genes. Functional enrichment and molecular pathway mapping revealed 13 functionally enriched categories and 11 enriched molecular pathways that were common to the three Macrobrachium species. Pattern of selection analysis revealed 26 genes with signatures of positive selection among pairwise species comparisons. Overall, our results indicate that the same key genes and similar molecular pathways are likely to be involved with freshwater adaptation widely across this decapod group; with nonoverlapping sets of genes showing differential expression (mainly osmoregulatory genes) and signatures of positive selection (genes involved with different life history traits).
Collapse
Affiliation(s)
- Md Lifat Rahi
- Science and Engineering Faculty, School of Earth Environment and Biological Sciences (EEBS), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Peter B Mather
- Science and Engineering Faculty, School of Earth Environment and Biological Sciences (EEBS), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Tariq Ezaz
- Wildlife Genetics Laboratory, Institute for Applied Ecology, University of Canberra, Australian Capital Territory, Australia
| | - David A Hurwood
- Science and Engineering Faculty, School of Earth Environment and Biological Sciences (EEBS), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
10
|
microRNAs in Macrobrachium olfersii embryos: Identification, their biogenesis components and potential targets. Comput Biol Chem 2018; 78:205-216. [PMID: 30576966 DOI: 10.1016/j.compbiolchem.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 11/24/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
Abstract
In embryonic development, microRNAs (miRNAs) regulate the complex gene expression associated with the complexity of embryogenesis. Today, few studies have been conducted on the identification of miRNAs and components of miRNA biogenesis on embryonic development in crustaceans, especially in prawns. In this context, the aim of this study was to identify in silico components of miRNA biogenesis, and miRNAs and potential target genes during embryonic development in the prawn Macrobrachium olfersii through small RNAs and transcriptome analyses. Using the miRDeep2 program, we identified 17 miRNA precursors in M. olfersii, which seven (miR-9, miR-10, miR-92, miR-125, miR-305, miR-1175, and miR-2788) were reported in the miRBase database, indicating high evolutionary conservation of these sequences among animals. The other 10 miRNAs of M. olfersii were novel miRNAs and only similar to Macrobrachium niponnense miRNAs, indicating genus-specific miRNAs. In addition, eight key components of miRNA biogenesis (DROSHA, PASHA/DGCR8, XPO5, RAN, DICER, TRBP2, AGO, and PIWI) were identified in M. olfersii embryos unigenes. In the annotation of miRNA targets, 516 genes were similar to known sequences in the GenBank database. Regarding the conserved miRNAs, we verified that they were differentially expressed during embryonic development in M. olfersii. In conclusion, this is the first study that identifies conserved and novel miRNAs in the prawn M. olfersii with some miRNA target genes involved in embryonic development. Our results will allow further studies on the function of these miRNAs and miRNA biogenesis components during embryonic development in M. olfersii and other prawns of commercial interest.
Collapse
|
11
|
Moshtaghi A, Rahi ML, Mather PB, Hurwood DA. An investigation of gene expression patterns that contribute to osmoregulation in Macrobrachium australiense: Assessment of adaptive responses to different osmotic niches. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Vogt G. Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives. J Biosci 2018. [DOI: 10.1007/s12038-018-9741-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Moshtaghi A, Rahi ML, Mather PB, Hurwood DA. Understanding the Genomic Basis of Adaptive Response to Variable Osmotic Niches in Freshwater Prawns: A Comparative Intraspecific RNA-Seq Analysis of Macrobrachium australiense. J Hered 2017; 108:544-552. [DOI: 10.1093/jhered/esx045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/03/2017] [Indexed: 12/30/2022] Open
|