1
|
Hegedus C, Andronie L, Uiuiu P, Jurco E, Lazar EA, Popescu S. Pets, Genuine Tools of Environmental Pollutant Detection. Animals (Basel) 2023; 13:2923. [PMID: 37760323 PMCID: PMC10525180 DOI: 10.3390/ani13182923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In a shared environment, our companion animals became unintended sentinels for pollutant exposure consequences, developing even earlier similar conditions to humans. This review focused on the human-pet cohabitation in an environment we all share. Alongside other species, canine and feline companions are veritable models in human medical research. The latency period for showing chronic exposure effects to pollutants is just a few years in them, compared to considerably more, decades in humans. Comparing the serum values of people and their companion animals can, for example, indicate the degree of poisonous lead load we are exposed to and of other substances as well. We can find 2.4 times higher perfluorochemicals from stain- and grease-proof coatings in canine companions, 23 times higher values of flame retardants in cats, and 5 times more mercury compared to the average levels tested in humans. All these represent early warning signals. Taking these into account, together with the animal welfare orientation of today's society, finding non-invasive methods to detect the degree of environmental pollution in our animals becomes paramount, alongside the need to raise awareness of the risks carried by certain chemicals we knowingly use.
Collapse
Affiliation(s)
- Cristina Hegedus
- Department of Fundamental Sciences, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Luisa Andronie
- Department of Biophysics, Meteorology and Climatology, Faculty of Forestry and Cadastre, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Paul Uiuiu
- Department of Fundamental Sciences, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Eugen Jurco
- Department of Technological Sciences, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Eva Andrea Lazar
- Association for the Welfare of Horses, 725700 Vatra Dornei, Romania;
| | - Silvana Popescu
- Department of Animal Hygiene and Welfare, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
2
|
Avila A, Prieto L, Luna-Acosta A. Nine decades of data on environmental chemical pollutant exposure in dogs: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45515-45527. [PMID: 36807041 PMCID: PMC10097795 DOI: 10.1007/s11356-022-24791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
In recent decades, a global concern associated with environmental chemical contamination has emerged as an important risk factor for the development of human diseases. Risk assessment methods based on animal approaches have shown to be very useful as early warning systems. However, questions, knowledge gaps, and limitations still need to be addressed in animals close to humans, such as dogs. The objective of this study was to analyze citation patterns, impact of publications, and most relevant authors, countries, institutional affiliations, and lines of research on environmental chemical contaminants and their relationship with dogs, in terms of exposure and biological effects. For this, a bibliometric analysis was carried out. Results revealed an increase in scientific production on this subject during the last 90 years in journals such as Health Physics, Science of the Total Environment, and Plos One, highlighting authors such as Muggenburg, Sonne, Boecker, and Dietz. The USA, Brazil, Germany, and the UK and universities such as California, Colorado State, and Purdue were the most relevant countries and institutional affiliations in scientific production and collaboration in relation to this topic. There is a growing interest in the development of lines of research related to heavy metals (mercury and lead mainly) and persistent organic compounds (PCBs, PBDEs, pesticides) using dogs as sentinels, as well as new sources of interest related to zoonosis and One Health. Finally, issues related to pollutants, sentinel lymph nodes, and epidemiology appear as new areas of research. These results highlight interesting current challenges and future research perspectives on dogs as sentinels for environmental chemical contamination.
Collapse
Affiliation(s)
- Albert Avila
- Departamento de Ecología y Territorio, Facultad de Estudios Ambientales Y Rurales, Pontificia Universidad Javeriana, Transversal 4 # 42-00, Edificio 67, Piso 8, Bogotá, Colombia.
| | - Laura Prieto
- Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 43-82, Bogotá, Colombia
| | - Andrea Luna-Acosta
- Departamento de Ecología y Territorio, Facultad de Estudios Ambientales Y Rurales, Pontificia Universidad Javeriana, Transversal 4 # 42-00, Edificio 67, Piso 8, Bogotá, Colombia
| |
Collapse
|
3
|
González-Gómez X, Figueiredo-González M, Villar-López R, Martínez-Carballo E. Biomonitoring of organic pollutants in pet dog plasma samples in North-Western Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161462. [PMID: 36623653 DOI: 10.1016/j.scitotenv.2023.161462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Most of organic pollutants (OPs) have the ability to interfere with biological systems causing negative effects in living beings, including humans. In the last decades, pets have been used as bioindicators of human exposure because they share the same habitat with their homeowners. We sought to determine levels of approximately 70 OPs, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated biphenyl ethers (PBDEs), organophosphate pesticides (OPPs), polycyclic aromatic hydrocarbons (PAHs) and pyrethroids (PYRs) in plasma samples from 39 pet dogs from Ourense (north-western Spain). The results revealed that PAHs were the dominant OPs (mean value 175 ± 319 ng/g lipid weight (lw)), followed by PYRs (132 ± 352 ng/g lw), PCBs (122 ± 96 ng/g lw), OCPs (33 ± 17 ng/g lw), PBDEs (19 ± 18 ng/g lw) and OPPs (2.1 ± 2.7 ng/g lw) in plasma samples. We have previously detected the target OPs in hair samples of pets, collected simultaneously and similar trend of some OPs has been observed. Moreover, pyrene and chrysene showed correlations between levels detected in both matrices.
Collapse
Affiliation(s)
- Xiana González-Gómez
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, Santiago de Compostela 15782, Spain.
| | - María Figueiredo-González
- Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense 32004, Spain.
| | - Roberto Villar-López
- Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense 32004, Spain
| | - Elena Martínez-Carballo
- Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense 32004, Spain.
| |
Collapse
|
4
|
Pocar P, Grieco V, Aidos L, Borromeo V. Endocrine-Disrupting Chemicals and Their Effects in Pet Dogs and Cats: An Overview. Animals (Basel) 2023; 13:ani13030378. [PMID: 36766267 PMCID: PMC9913107 DOI: 10.3390/ani13030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Over the past few decades, several pollutants classified as environmental endocrine-disrupting chemicals (EDCs) have become a matter of significant public health concern. Companion animals play a major role in human society, and pet ownership is substantially increasing worldwide. These intimate human-pet relationships imply sharing much of the same environment, thus including exposure to similar levels of EDCs in daily routine. Here, we review the current knowledge on the sources and routes of exposure to EDCs in domestic indoor and outdoor environments and discuss whether endocrine disruption is a health concern in pets. We summarize the phenomenon of endocrine disruption, providing examples of EDCs with a known impact on dog and cat health. Then, we propose an overview of the literature on the adverse effects of EDCs in domestic pets, with a special focus on the health of reproductive and thyroid systems. Finally, we explore the potential role of companion animals as unintentional sentinels of environmental exposure to EDCs and the implications for public health risk assessment in a "shared risk" scenario. Overall, this review supports the need for an integrated approach considering humans, animals, and the environment as a whole for a comprehensive assessment of the impact of EDCs on human and animal health.
Collapse
|
5
|
Wise CF, Hammel SC, Herkert N, Ma J, Motsinger-Reif A, Stapleton HM, Breen M. Comparative Exposure Assessment Using Silicone Passive Samplers Indicates That Domestic Dogs Are Sentinels To Support Human Health Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7409-7419. [PMID: 32401030 PMCID: PMC7655112 DOI: 10.1021/acs.est.9b06605] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Silicone wristbands are promising passive samplers to support epidemiological studies in characterizing exposure to organic contaminants; however, investigating associated health risks remains challenging because of the latency period for many chronic diseases that take years to manifest. Dogs provide valuable insights as sentinels for exposure-related human disease because they share similar exposures in the home, have shorter life spans, share many clinical/biological features, and have closely related genomes. Here, we evaluated exposures among pet dogs and their owners using silicone dog tags and wristbands to determine if contaminant levels were correlated with validated exposure biomarkers. Significant correlations between measures on dog tags and wristbands were observed (rs = 0.38-0.90; p < 0.05). Correlations with their respective urinary biomarkers were stronger in dog tags compared to that in human wristbands (rs = 0.50-0.71; p < 0.01) for several organophosphate esters. This supports the value of using silicone bands with dogs to investigate health impacts on humans from shared exposures.
Collapse
Affiliation(s)
- Catherine F. Wise
- Department of Biological Sciences, Environmental and Molecular Toxicology Program, North Carolina State University, 850 Main Campus Drive, Raleigh, North Carolina 27606, United States
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, North Carolina 27607, United States
| | - Stephanie C. Hammel
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas Herkert
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Jun Ma
- Department of Statistics, North Carolina State University, Raleigh, North Carolina 27607, United States
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke Cancer Institute, Durham, North Carolina, United States
| | - Matthew Breen
- Department of Biological Sciences, Environmental and Molecular Toxicology Program, North Carolina State University, 850 Main Campus Drive, Raleigh, North Carolina 27606, United States
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, North Carolina 27607, United States
- Duke Cancer Institute, Durham, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27607, United States
| |
Collapse
|
6
|
Khidkhan K, Mizukawa H, Ikenaka Y, Nakayama SMM, Nomiyama K, Yokoyama N, Ichii O, Takiguchi M, Tanabe S, Ishizuka M. Altered hepatic cytochrome P450 expression in cats after chronic exposure to decabromodiphenyl ether (BDE-209). J Vet Med Sci 2020; 82:978-982. [PMID: 32435004 PMCID: PMC7399315 DOI: 10.1292/jvms.20-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The knowledge of cytochrome P450 (CYP) expression involved in chemical exposure are necessary in clinical applications for the medication and prediction of adverse effects. The
aim of this study was to evaluate the mRNA expression of CYP1–CYP3 families in cats exposed to BDE-209 for one year. All selected CYP isoforms showed no significant difference in
mRNA expressions between control and exposure groups, however, CYP3A12 and CYP3A131 revealed tend to be two times higher in the exposure group compared to control group. The
present results indicate that the chronic exposure of BDE209 could not alter CYP expression in the liver of cats. This result considered caused by the deficiency of CYP2B subfamily
which is major metabolism enzyme of polybrominated diphenyl ethers (PBDEs) in cat.
Collapse
Affiliation(s)
- Kraisiri Khidkhan
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Hazuki Mizukawa
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Yoshinori Ikenaka
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Shouta M M Nakayama
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Nozomu Yokoyama
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Osamu Ichii
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Sapporo, Hokkaido 060-8589, Japan
| | - Mitsuyoshi Takiguchi
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
7
|
Wang C, Zhu J, Zhang Z, Chen H, Ji M, Chen C, Hu Y, Yu Y, Xia R, Shen J, Gong X, Wang SL. Rno-miR-224-5p contributes to 2,2',4,4'-tetrabromodiphenyl ether-induced low triiodothyronine in rats by targeting deiodinases. CHEMOSPHERE 2020; 246:125774. [PMID: 31901531 DOI: 10.1016/j.chemosphere.2019.125774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Hypothyroidism is commonly associated with substantial adverse impacts on human health, and polybrominated diphenyl ether (PBDE), a kind of classic thyroid hormone disruptor, was speculated to be a potential environmental factor, but its effect on thyroxine metabolism has received little attention. In the present study, we investigated the role and mechanism of rno-miR-224-5p in deiodinase-mediated thyroxine metabolism in rats treated with 2,2',4,4'-tetrabromodiphenyl ether (BDE47), a predominant PBDE congener in humans. BDE47 decreased plasma triiodothyronine (T3) and thyroxine (T4) and increased reverse T3 (rT3) in the rats, and the expression of type 1 deiodinase (DIO1) and type 3 deiodinase (DIO3) increased in both the rats and H4-II-E cells. Rno-miR-224-5p was predicted to target dio1 instead of dio3, according to the TargetScan, miRmap.org and microRNA.org databases. Experiments showed that the rno-miR-224-5p level was decreased by BDE47 in a dose-dependent manner and confirmed that rno-miR-224-5p downregulated both DIO1 and DIO3 in the H4-II-E cells and in the rats, as determined using mimics and an inhibitor of rno-miR-224-5p. Furthermore, DIO1 was observed to be a direct functional target of rno-miR-224-5p, whereas DIO3 was indirectly regulated by rno-miR-224-5p via the phosphorylation of the MAPK/ERK (but not p38 or JNK) pathway. Reportedly, DIO1 and DIO3 act principally as inner-ring deiodinases and are responsible for the conversion of T4 to rT3, but not to T3, and the final clearance of thyroxine (mainly in the form of T2). Our results demonstrated that BDE47 induced low levels of T3 conversion through DIO1 and DIO3, which were regulated by rno-miR-224-5p. The findings suggest a novel additional mechanism of PBDE-induced thyroxine metabolism disorder that differs from that of PBDEs as environmental thyroid disruptors.
Collapse
Affiliation(s)
- Chao Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Jiansheng Zhu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Hang Chen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Minghui Ji
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Chao Chen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Yuhuan Hu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Yongquan Yu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Jiemiao Shen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Xing Gong
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Shou-Lin Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China.
| |
Collapse
|
8
|
Takaguchi K, Nishikawa H, Mizukawa H, Tanoue R, Yokoyama N, Ichii O, Takiguchi M, Nakayama SMM, Ikenaka Y, Kunisue T, Ishizuka M, Tanabe S, Iwata H, Nomiyama K. Effects of PCB exposure on serum thyroid hormone levels in dogs and cats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1172-1183. [PMID: 31726548 DOI: 10.1016/j.scitotenv.2019.06.300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
Polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) might disrupt thyroid function. However, there is no clear evidence of PCB exposure disrupting thyroid hormone (TH) homeostasis in dogs and cats. The present study conducted in vivo experiments to evaluate the effects of a mixture of 12 PCB congeners (CB18, 28, 70, 77, 99, 101, 118, 138, 153, 180, 187 and 202, each congener 0.5 mg/kg BW, i.p. administration) on serum TH levels in male dogs (Canis lupus familiaris) and male cats (Felis silvestris catus). In PCB-exposed dogs, the time courses of higher-chlorinated PCBs and L-thyroxine (T4)-like OH-PCBs (4-OH-CB107 and 4-OH-CB202) concentrations were unchanged or tended to increase, whereas those of lower-chlorinated PCBs and OH-PCBs tended to decrease after 24 h. In PCB-exposed cats, concentrations of PCBs increased until 6 h and then remained unchanged. The levels of lower-chlorinated OH-PCBs including 4'-OH-CB18 increased until 96 h and then decreased. In PCB-exposed dogs, free T4 concentrations were higher than those in the control group at 48 and 96 h after PCB administration and positively correlated with the levels of T4-like OH-PCBs, suggesting competitive binding of T4 and T4-like OH-PCBs to a TH transporter, transthyretin. Serum levels of total T4 and total 3,3',5-triiodo-L-thyronine (T3) in PCB-exposed dogs were lower than in the control group at 24 and 48 h and negatively correlated with PCB concentrations, implying that PCB exposure enhanced TH excretion by increasing TH uptake and TH conjugation enzyme activities in the dog liver. In contrast, no obvious changes in TH levels were observed in PCB-exposed cats. This could be explained by the lower levels of T4-like OH-PCBs and lower hepatic conjugation enzyme activities in cats compared with dogs. Different effects on serum TH levels in PCB-exposed dogs and cats are likely to be attributable to species-specific PCB and TH metabolism.
Collapse
Affiliation(s)
- Kohki Takaguchi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Nishikawa
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Hazuki Mizukawa
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime 790-8566, Japan
| | - Rumi Tanoue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Nozomu Yokoyama
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Osamu Ichii
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Mitsuyoshi Takiguchi
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shouta M M Nakayama
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yoshinori Ikenaka
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, X6001, Potchefstroom 2520, South Africa
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
9
|
González-Gómez X, Cambeiro-Pérez N, Martínez-Carballo E, Simal-Gándara J. Screening of organic pollutants in pet hair samples and the significance of environmental factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:311-319. [PMID: 29289779 DOI: 10.1016/j.scitotenv.2017.12.270] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Organic pollutants (OPs) represent a wide range of chemicals that are potentially harmful for human and wildlife health. Many of these pollutants have been identified as endocrine disruptors that can alter hormonal balance producing adverse biological effects such as neurotoxicity, reproductive disorders, carcinogenicity and hepatotoxicity. For years, hair has been selected as a non-invasive source to assess levels of animal contamination. In the present study, a multiclass screening method for determining about 60 organic pollutants in pet hair was designed and validated for qualitative and quantitative purposes. Concentrations from different classes of organochlorine, and organophosphate pesticides (OCPs, and OPPs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (NDL-PCBs and DL-PCBs), polybrominated diphenyl ethers (PBDEs) and organophosphate esters (OPEs) were identified in the selected pet hair samples from Ourense (NW, Spain). We detected most of these pollutants in the selected hair pets. The mean concentrations found ranged from 89 to 6556ng/g for OPEs, from 8.6 to 1031ng/g for PAHs, from 8.6 to 256ng/g for PBDEs, from 29 to 184ng/g for OPPs, from 0.29 to 139 for OCPs, from 0.30 to 59ng/g for NDL-PCBs and from 1.2 to 14ng/g for DL-PCBs. To our knowledge, this is the first study to document the presence of OPs in pets from North-West Spain and it could provide baseline information for future monitoring of OPs in the area.
Collapse
Affiliation(s)
- Xiana González-Gómez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, 32004 Ourense, Spain.
| | - Noelia Cambeiro-Pérez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, 32004 Ourense, Spain.
| | - Elena Martínez-Carballo
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, 32004 Ourense, Spain.
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, 32004 Ourense, Spain.
| |
Collapse
|