1
|
Hadpech S, Thongboonkerd V. Proteomic investigations of dengue virus infection: key discoveries over the last 10 years. Expert Rev Proteomics 2024; 21:281-295. [PMID: 39049185 DOI: 10.1080/14789450.2024.2383580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Dengue virus (DENV) infection remains one of the most significant infectious diseases in humans. Several efforts have been made to address its molecular mechanisms. Over the last 10 years, proteomics has been widely applied to investigate various aspects of DENV infection. AREAS COVERED In this review, we briefly introduce common proteomics approaches using various mass spectrometric modalities followed by summarizing all the discoveries obtained from proteomic investigations of DENV infection over the last 10 years. These include the data on DENV-vector interactions and host responses to address the DENV biology and disease mechanisms. Moreover, applications of proteomics to disease prevention, diagnosis, vaccine design, development of anti-DENV agents and other new treatment strategies are discussed. EXPERT OPINION Despite efforts on disease prevention, DENV infection is still a significant global healthcare burden that affects the general population. As summarized herein, proteomic technologies with high-throughput capabilities have provided more in-depth details of protein dynamics during DENV infection. More extensive applications of proteomics and other powerful research tools would provide a promise to better cope and prevent this mosquito-borne infectious disease.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
2
|
Vergoten G, Bailly C. Interaction of panduratin A and derivatives with the SARS-CoV-2 main protease (m pro): a molecular docking study. J Biomol Struct Dyn 2022:1-11. [PMID: 35975613 DOI: 10.1080/07391102.2022.2112618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Panduratin A (Pa-A) is a prenylated cyclohexenyl chalcone isolated from the rhizomes of the medicinal and culinary plant Boesenbergia rotunda (L.) Mansf., commonly called fingerroots. Both an ethanolic plant extract and Pa-A have shown a marked antiviral activity against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the COVID-19 pandemic disease. Pa-A functions as a protease inhibitor inhibiting infection of human cells by the virus. We have modeled the interaction of Pa-A, and 26 panduratin analogues with the main protease (Mpro) of SARS-CoV-2 using molecular docking. The natural product 4-hydroxypanduratin showed a higher Mpro binding capacity than Pa-A and isopanduratin A. The interaction with MPro of all known panduratin derivatives (Pa-A to Pa-Y) have been compared, together with more than 60 reference products. Three compounds emerged as potential robust MPro binders: Pa-R, Pa-V, Pa-S, with a binding capacity significantly higher than 4-OH-Pa-A and Pa-A. The empirical energy of interaction (ΔE) calculated with the best compound in the panduratin series, Pa-R bound to Mpro, surpassed that measured with the top reference protease inhibitors such a ruprintrivir, lufotrelvir, and glecaprevir. Structure-binding relationships are discussed. Compounds with a flavanone moiety (PA-R/S) are the best binders, better than those with a chromene unit (Pa-F/G). The extended molecules (such as Pa-V) exhibit good Mpro binding, but the dimeric compound Pa-Y is too long and protrudes outside the binding cavity. The work provides novel ideas to guide the design of new molecules interacting with Mpro.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gérard Vergoten
- Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, France, Lille
| | | |
Collapse
|
3
|
Bailly C. Toward the use ofBoesenbergia rotundaextracts and the chalcone panduratin A to treat periodontitis. J Oral Biosci 2022; 64:183-192. [PMID: 35306173 DOI: 10.1016/j.job.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Novel affordable medications are needed to treat chronic periodontitis, which is one of the most common dental pathologies worldwide. Extracts prepared from the rhizome of the medicinal plant Boesenbergia rotunda (L.) Mansf., commonly known as fingerroot, are used to treat a variety of human pathologies. These extracts contain potent anti-inflammatory compounds, including the chalcone derivative panduratin A (Pa-A), which is the lead compound of a series of analogues, designated panduratins A to Y. The anti-inflammatory properties of the extracts of B. rotunda and the most abundant bioactive products found in these extracts (including Pa-A, 4-hydroxyoanduratin, isopanduratin, and others) have been reviewed. A standardized extract of the plant has promising utility in the treatment of gingival inflammation. The effects are characterized by three actions: (i) a direct antimicrobial effect against fungi and oral pathogens such as Porphyromonas gingivalis, (ii) a marked anti-inflammatory effect via a reduced production of mediators, like prostaglandin E2 and different interleukins, and (iii) a dual bone-preserving effect, with a reduction in bone resorption and an increase in bone formation. Acting as a protease inhibitor, Pa-A is one of the main active ingredients of the extract, implicated in these actions. A Pa-A-standardized extract of B. rotunda has been used in humans for treating dyspepsia. The product is safe and well-tolerated. The development of panduratin-containing dental products, for the prevention and treatment of periodontitis, has been proposed. The structural analogues, Pa-A to-Y, should also be investigated for the treatment of dental inflammation.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal), 59290, France
| |
Collapse
|
4
|
Bhowmick S, Alissa SA, Wabaidur SM, Chikhale RV, Islam MA. Structure-guided screening of chemical database to identify NS3-NS2B inhibitors for effective therapeutic application in dengue infection. J Mol Recognit 2020; 33:e2838. [PMID: 32060998 DOI: 10.1002/jmr.2838] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Dengue infection is the most common arthropod-borne disease caused by dengue viruses, predominantly affecting millions of human beings annually. To find out promising chemical entities for therapeutic application in Dengue, in the current research, a multi-step virtual screening effort was conceived to screen out the entire "screening library" of the Asinex database. Initially, through "Lipinski rule of five" filtration criterion almost 0.6 million compounds were collected and docked with NS3-NS2B protein. Thereby, the chemical space was reduced to about 3500 compounds through the analysis of binding affinity obtained from molecular docking study in AutoDock Vina. Further, the "Virtual Screening Workflow" (VSW) utility of Schrödinger suite was used, which follows a stepwise multiple docking programs such as - high-throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP) docking, and in postprocessing analysis the MM-GBSA based free binding energy calculation. Finally, five potent molecules were proposed as potential inhibitors for the dengue NS3-NS2B protein based on the investigation of molecular interactions map and protein-ligand fingerprint analyses. Different pharmacokinetics and drug-likeness parameters were also checked, which favour the potentiality of selected molecules for being drug-like candidates. The molecular dynamics (MD) simulation analyses of protein-ligand complexes were explained that NS3-NS2B bound with proposed molecules quite stable in dynamic states as observed from the root means square deviation (RMSD) and root means square fluctuation (RMSF) parameters. The binding free energy was calculated using MM-GBSA method from the MD simulation trajectories revealed that all proposed molecules possess such a strong binding affinity towards the dengue NS3-NS2B protein. Therefore, proposed molecules may be potential chemical components for effective inhibition of dengue NS3-NS2B protein subjected to experimental validation.
Collapse
Affiliation(s)
- Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Siham A Alissa
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa.,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Abstract
Dengue virus (DENV) belongs to the family Flaviviridae, genus Flavivirus. It is a single-stranded positive-sense ribonucleic acid virus with 10,700 bases. The genus Flavivirus includes other arthropod borne viruses such as yellow fever virus, West Nile virus, Zika virus, tick-borne encephalitis virus. It infects ~50–200 million people annually, putting over 3.6 billion people living in tropical regions at risk and causing ~20,000 deaths annually. The expansion of dengue is attributed to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement, and also viral evolution. There are four antigenically different serotypes of DENV based on the differences in their viral structural and nonstructural proteins. DENV infection causes a spectrum of illness ranging from asymptomatic to dengue fever to severe dengue shock syndrome. Infection with one serotype confers lifelong immunity against that serotype, but heterologus infection leads to severe dengue hemorrhagic fever due to antibody-dependent enhancement. Diagnosis of dengue infections is based mainly on serological detection of either antigen in acute cases or antibodies in both acute and chronic infection. Viral detection and real-time PCR detection though helpful is not feasible in resource poor setup. Treatment of dengue depends on symptomatic management along with fluid resuscitation and may require platelet transfusion. Although vaccine development is in late stages of development, developing a single vaccine against four serotypes often causes serious challenges to researchers; hence, the main stay of prevention is vector control and management.
Collapse
|
6
|
Development of a NS2B/NS3 protease inhibition assay using AlphaScreen ® beads for screening of anti-dengue activities. Heliyon 2018; 4:e01023. [PMID: 30560214 PMCID: PMC6289942 DOI: 10.1016/j.heliyon.2018.e01023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/27/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Background Dengue infection is an endemic infectious disease and it can lead to dengue fever, dengue hemorrhagic fever, and/or dengue shock syndromes. Dengue NS2B/NS3 protease complex is essential for viral replication and is a primary target for anti-dengue drug development. In this study, a NS2B/NS3 protease inhibition assay was developed using AlphaScreen® beads and was used to screen compounds for their protease inhibition activities. Methods The assay system utilized a known NS2B/NS3 peptide substrate, a recombinant of NS2B/NS3 protease with proprietary StrepTactin® donor and nickel chelate acceptor beads in 384-well format. Results The optimized assay to screen for NS2B/NS3 protease inhibitors was demonstrated to be potentially useful with reasonable zʹ factor, coefficient variance and signal to background ratio. However, screening of synthesized thioguanine derivatives using the optimized AlphaScreen® assay revealed weak NS2B/NS3 inhibition activities. Conclusion The AlphaScreen® assay to screen for NS2B/NS3 protease inhibitors is potentially applicable for high throughput screening.
Collapse
|
7
|
Keramagi AR, Skariyachan S. Prediction of binding potential of natural leads against the prioritized drug targets of chikungunya and dengue viruses by computational screening. 3 Biotech 2018; 8:274. [PMID: 29868312 PMCID: PMC5971020 DOI: 10.1007/s13205-018-1303-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 05/22/2018] [Indexed: 01/07/2023] Open
Abstract
The current study aimed to assess the binding potential of herbal lead molecules against the prioritized molecular targets of chikungunya virus (CHIKV) and dengue virus (DENV) by computational virtual screening and suggests a novel therapeutic intervention. Based on the metabolic pathway analysis and virulent functions, the non-structural and envelop proteins present in CHIKV and DENV were identified as putative drug targets. The structures of the protein not available in their native forms were computationally predicted by homology modeling. The lead compounds from 43 herbal sources were screened and their drug likeliness and pharmacokinetics properties were computationally predicted. The binding potential of selected phytoligands against the prioritized drug targets were analyzed by molecular docking studies. This study revealed that Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)chromen-4-one) and Chymopain (disodium;4,5-dihydroxybenzene-1,3-disulfonate), natural flavonols present in Carica papaya and Gossypetin (3, 5, 7, 8, 3', 4'-hexahydroxyflavone), a natural flavonoid available in Hibiscus sabdariffa were demonstrated promising good binding potential with minimum binding energy (kcal/mol) and maximum stabilizing interactions to the putative drug targets of CHIKV and DENV. The selected lead molecules demonstrated ideal drug likeliness, ADMET (adsorption, distribution, excretion, metabolism and toxicity) features required for the drug development. The molecular docking studies suggested that the presence of these compounds probably responsible for the antiviral properties of Carica papaya, which was traditionally known as therapeutic remedy for dengue viral infections. This study provides profound insight for the experimental validation of the applied approach and industrial scale-up of the suggested herbal lead molecules as promising lead candidates against CHIKV and DENV infections.
Collapse
Affiliation(s)
- Ambika R. Keramagi
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka India
| | - Sinosh Skariyachan
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka India
- Visvesvaraya Technological University, Belagavi, India
| |
Collapse
|