1
|
Araspin L, Measey J, Herrel A. Does aquatic performance predict terrestrial performance: a case study with an aquatic frog, Xenopus laevis. J Exp Biol 2023; 226:jeb246545. [PMID: 37990942 DOI: 10.1242/jeb.246545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
The physical properties of the environment impose strong selection on organisms and their form-function relationships. In water and on land, selective pressures differ, with water being more viscous and denser than air, and gravity being the most important external force on land for relatively large animals such as vertebrates. These different properties of the environment could drive variation in the design and mechanics of the locomotor system of organisms. Animals that use multiple environments can consequently exhibit locomotion conflicts between the demands imposed by the media, leading to potential trade-offs. Here, we tested for the presence of such locomotor trade-offs depending on the environment (water or land) in a largely aquatic frog, Xenopus laevis. We focused on terrestrial and aquatic exertion capacity (time and distance swum or jumped until exhaustion) and aquatic and terrestrial burst capacity (maximal instantaneous swimming velocity and maximal force jump) given the ecological relevance of these traits. We tested these performance traits for trade-offs, depending on environments (water versus air) and locomotor modes (i.e. exertion and burst performance). Finally, we assessed the contribution of morphological traits to each performance trait. Our data show no trade-offs between the performance traits and between the environments, suggesting that X. laevis is equally good at swimming and jumping thanks to the same underlying morphological specialisations. We did observe, however, that morphological predictors differed depending on the environment, with variation in head shape and forelimb length being good predictors for aquatic locomotion and variation in hindlimb and forelimb segments predicting variation in jumping performance on land.
Collapse
Affiliation(s)
- Laurie Araspin
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
- Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - John Measey
- Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
- Centre for Invasion Biology, Institute for Biodiversity, Yunnan University, Kunming 650106, China
| | - Anthony Herrel
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, 9000 Ghent, Belgium
- Department of Biology, University of Antwerp, Antwerpen 2610, Belgium
- Naturhistorisches Museum Bern, 3005 Bern, Switzerland
| |
Collapse
|
2
|
Juarez BH, Moen DS, Adams DC. Ecology, sexual dimorphism, and jumping evolution in anurans. J Evol Biol 2023; 36:829-841. [PMID: 37129372 DOI: 10.1111/jeb.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/30/2022] [Accepted: 02/06/2023] [Indexed: 05/03/2023]
Abstract
Sexual dimorphism (SD) is a common feature of animals, and selection for sexually dimorphic traits may affect both functional morphological traits and organismal performance. Trait evolution through natural selection can also vary across environments. However, whether the evolution of organismal performance is distinct between the sexes is rarely tested in a phylogenetic comparative context. Anurans commonly exhibit sexual size dimorphism, which may affect jumping performance given the effects of body size on locomotion. They also live in a wide variety of microhabitats. Yet the relationships among dimorphism, performance, and ecology remain underexamined in anurans. Here, we explore relationships between microhabitat use, body size, and jumping performance in males and females to determine the drivers of dimorphic patterns in jumping performance. Using methods for predicting jumping performance through anatomical measurements, we describe how fecundity selection and natural selection associated with body size and microhabitat have likely shaped female jumping performance. We found that the magnitude of sexual size dimorphism (where females are about 14% larger than males) was much lower than dimorphism in muscle volume, where females had 42% more muscle than males (after accounting for body size). Despite these sometimes-large averages, phylogenetic t-tests failed to show the statistical significance of SD for any variable, indicating sexually dimorphic species tend to be closely related. While SD of jumping performance did not vary among microhabitats, we found female jumping velocity and energy differed across microhabitats. Overall, our findings indicate that differences in sex-specific reproductive roles, size, jumping-related morphology, and performance are all important determinants in how selection has led to the incredible ecophenotypic diversity of anurans.
Collapse
Affiliation(s)
- Bryan H Juarez
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
- Departments of Biology and Earth System Science, Stanford University, Stanford, California, USA
| | - Daniel S Moen
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Dean C Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
3
|
Premachandra T, Cauret CMS, Conradie W, Measey J, Evans BJ. Population genomics and subgenome evolution of the allotetraploid frog Xenopus laevis in southern Africa. G3 (BETHESDA, MD.) 2022; 13:6916838. [PMID: 36524354 PMCID: PMC9911082 DOI: 10.1093/g3journal/jkac325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Allotetraploid genomes have two distinct genomic components called subgenomes that are derived from separate diploid ancestral species. Many genomic characteristics such as gene function, expression, recombination, and transposable element mobility may differ significantly between subgenomes. To explore the possibility that subgenome population structure and gene flow may differ as well, we examined genetic variation in an allotetraploid frog-the African clawed frog (Xenopus laevis)-over the dynamic and varied habitat of its native range in southern Africa. Using reduced representation genome sequences from 91 samples from 12 localities, we found no strong evidence that population structure and gene flow differed substantially by subgenome. We then compared patterns of population structure in the nuclear genome to the mitochondrial genome using Sanger sequences from 455 samples from 183 localities. Our results provide further resolution to the geographic distribution of mitochondrial and nuclear diversity in this species and illustrate that population structure in both genomes corresponds roughly with variation in seasonal rainfall and with the topography of southern Africa.
Collapse
Affiliation(s)
- Tharindu Premachandra
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, ON L8S4K1, Canada
| | - Caroline M S Cauret
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, ON L8S4K1, Canada,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Werner Conradie
- Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood, Gqeberha 6013, South Africa,Department of Conservation Management, Natural Resource Science and Management Cluster, Faculty of Science, Nelson Mandela University, George Campus, George 6019, South Africa
| | - John Measey
- Corresponding author: Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
| | | |
Collapse
|
4
|
Schoeman AL, du Preez LH, Kmentová N, Vanhove MPM. A monogenean parasite reveals the widespread translocation of the African Clawed Frog in its native range. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anneke L. Schoeman
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North‐West University Potchefstroom South Africa
- DSI‐NRF Centre of Excellence for Invasion Biology Stellenbosch South Africa
- South African Institute for Aquatic Biodiversity Grahamstown South Africa
| | - Louis H. du Preez
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North‐West University Potchefstroom South Africa
- South African Institute for Aquatic Biodiversity Grahamstown South Africa
| | - Nikol Kmentová
- Hasselt University Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Agoralaan Gebouw D Diepenbeek Belgium
| | - Maarten P. M. Vanhove
- Hasselt University Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Agoralaan Gebouw D Diepenbeek Belgium
| |
Collapse
|
5
|
Akram A, Rais M, Saeed M, Ahmed W, Gill S, Haider J. Movement Paradigm for Hazara Torrent Frog Allopaahazarensis and Murree Hills Frog Nanoranavicina (Anura: Dicroglossidae). Biodivers Data J 2022; 10:e84365. [PMID: 36761547 PMCID: PMC9848518 DOI: 10.3897/bdj.10.e84365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/06/2022] [Indexed: 11/12/2022] Open
Abstract
Endemic anurans are particularly vulnerable to environmental changes, and are susceptible to population declines because of their restricted distribution ranges. The Murree Hills Frog Nanoranavicina and Hazara Torrent Frog Allopaahazarensis are associated with the torrential streams and nearby clear water pools in subtropical chir pine forest and other forest types, at elevations higher than 1000 m in Pakistan. In this study, we have provided data on the extent of movement of these frog species for the first time. We installed radio transmitters on a total of 13 Murree Hills Frogs and 13 Hazara Torrent Frogs during eight consecutive days in September 2017 and 2018. Our results showed that these frogs did not move long distances along the stream or away from the stream into the forest. All the radio-tracked frogs showed movement of < 3 m. We found a significant differences only in the distance moved by Murree Hills Frogs between the two years studied. Based on our findings, we propose a movement paradigm that focuses on conservation implications for these endemic frogs.
Collapse
Affiliation(s)
- Ayesha Akram
- Herpetology Lab, Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan, Rawalpindi, PakistanHerpetology Lab, Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, Rawalpindi 46000, PakistanRawalpindiPakistan
| | - Muhammad Rais
- PMAS Arid Agriculture University Rawalpindi, Rawalpindi, PakistanPMAS Arid Agriculture University RawalpindiRawalpindiPakistan
| | - Muhammad Saeed
- Herpetology Lab, Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan, Rawalpindi, PakistanHerpetology Lab, Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, Rawalpindi 46000, PakistanRawalpindiPakistan
| | - Waseem Ahmed
- Herpetology Lab, Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan, Rawalpindi, PakistanHerpetology Lab, Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, Rawalpindi 46000, PakistanRawalpindiPakistan
| | - Sumbul Gill
- Herpetology Lab, Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan, Rawalpindi, PakistanHerpetology Lab, Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, Rawalpindi 46000, PakistanRawalpindiPakistan
| | - Jibran Haider
- Gilgit-Baltistan Forest, Wildlife and Environment Department, Gilgit 15100, Pakistan, Gilgit, PakistanGilgit-Baltistan Forest, Wildlife and Environment Department, Gilgit 15100, PakistanGilgitPakistan
| |
Collapse
|
6
|
Elepfandt A, Gutsche A, Fischer WJ, Leujak W, Bishop PJ. Long-term field study of the behaviour of Xenopus laevis (Pipidae) in a small dam. AFR J HERPETOL 2022. [DOI: 10.1080/21564574.2021.1998234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Alexander Gutsche
- Humboldt-Universität zu Berlin, Inst. Biologie, Berlin, Germany
- Current address: Museum für Naturkunde, Berlin, Germany
| | - Werner J Fischer
- Universität Konstanz, Fak. Biologie, Konstanz, Germany
- Current address: F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Wera Leujak
- Humboldt-Universität zu Berlin, Inst. Biologie, Berlin, Germany
- Current address: Umweltbundesamt (UBA), Dessau-Roßlau, Germany
| | - Phillip J Bishop
- University of the Witwatersrand, Department of Zoology, Johannesburg, South Africa
- Last address: University of Otago, Department of Zoology, Dunedin, New Zealand
- Dedicated to the late Phillip J Bishop
| |
Collapse
|
7
|
Wolmarans NJ, Bervoets L, Meire P, Wepener V. Sub-lethal exposure to malaria vector control pesticides causes alterations in liver metabolomics and behaviour of the African clawed frog (Xenopus laevis). Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109173. [PMID: 34492387 DOI: 10.1016/j.cbpc.2021.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 11/19/2022]
Abstract
In this study we explore the sub-lethal effects of two malaria vector control pesticides, deltamethrin and dichlorodiphenyltrichloroethane (DDT), on Xenopus laevis by incorporating different levels of biological organisation. Pesticide accumulation in frog tissue was measured alongside liver metabolomics and individual swimming behaviour to assess whether changes presented at these different levels, and if such changes could be linked between levels. Results showed evidence of concentration dependent accumulation of DDT and its metabolites, but no measurable accumulation of deltamethrin in adult X. laevis after 96 h of exposure. Both DDT and deltamethrin were shown to cause alterations in the liver metabolome of X. laevis. We also showed that some of these changes can be enhanced in exposure to a mixture of these two pesticides. Initial behavioural responses recorded directly after exposure were seen in the form of decreased activity, less alterations between mobility states, and less time spent at the water surface. This response persisted after 96 h of exposure to a mixture of the two pesticides. This study shows that sub-lethal exposure to pesticides can alter the biochemical homeostasis of frogs with the potential to cascade onto behavioural and ecological levels in mixture exposure scenarios.
Collapse
Affiliation(s)
- Nico J Wolmarans
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Laboratory of Systemic, Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium.
| | - Lieven Bervoets
- Laboratory of Systemic, Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Patrick Meire
- Ecosystem Management Research Group (Ecobe), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Wolmarans NJ, Bervoets L, Gerber R, Yohannes YB, Nakayama SM, Ikenaka Y, Ishizuka M, Meire P, Smit NJ, Wepener V. Bioaccumulation of DDT and other organochlorine pesticides in amphibians from two conservation areas within malaria risk regions of South Africa. CHEMOSPHERE 2021; 274:129956. [PMID: 33979909 DOI: 10.1016/j.chemosphere.2021.129956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The threat to wildlife from chemical exposure exists regardless of the presence of conservation boundaries. An issue exacerbated by the use of environmentally persistent insecticides for vector control and long-range transport of legacy persistent organic pollutants. In this comparative study between two important conservation regions in South Africa, Kruger National Park (KNP) and Ndumo Game Reserve (NGR), we assessed organochlorine pesticide (OCP) accumulation in several anuran species collected from within the conservation regions. The two conservation regions differ in size and subsequent proximity of collection sites to OCP input sources. Detectable concentrations of OCPs were present in ∼ half the frogs analysed from KNP and ∼all frogs from NGR and total OCP loads were similar between regions, where measured in the same species. The OCP profiles in KNP frogs were representative of legacy pesticides likely introduced via long-range transport, whereas NGR profiles showed influence of current use of DDT consistent with close proximity to sources. This indicates amphibians can accumulate OCPs within conservation regions and that the exposure of non-target organisms inside conservation regions to current use pesticides has a strong association with proximity to sources. These results serve to inform conservation management decision making with regard to the non-target organism effects of chemical interventions such as vector control pesticide use in and around conservation regions.
Collapse
Affiliation(s)
- Nico J Wolmarans
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Laboratory of Systemic, Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium.
| | - Lieven Bervoets
- Laboratory of Systemic, Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Ruan Gerber
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Yared Beyene Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shouta Mm Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinori Ikenaka
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Patrick Meire
- Ecosystem Management Research Group (Ecobe), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Vimercati G, Kruger N, Secondi J. Land cover, individual's age and spatial sorting shape landscape resistance in the invasive frog Xenopus laevis. J Anim Ecol 2021; 90:1177-1190. [PMID: 33608946 DOI: 10.1111/1365-2656.13445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
The description of functional connectivity is based on the quantification of landscape resistance, which represents species-specific movement costs across landscape features. Connectivity models use these costs to identify movement corridors at both individual and population levels and provide management recommendations for populations of conservation interest. Typically, resistance costs assigned to specific land cover types are assumed to be valid for all individuals of the population. Little attention has been paid to intraspecific variation in resistance costs due to age or dispersal syndrome, which may significantly affect model predictions. We quantified resistance costs in an expanding invasive population of the African clawed frog Xenopus laevis in Western France. In this principally aquatic amphibian, juveniles, sub-adults and adults disperse overland. The enhancement of dispersal traits via spatial sorting has been also observed at the range periphery of the population. Resistance costs, and thus connectivity, might vary as a function of life stage and position within the invaded range. We assessed multiple dimensions of functional connectivity. On various land cover types, we measured locomotion, as crossing speed, in different post-metamorphic age classes, and dehydration, sensitivity of locomotion to dehydration and substrate preference in juveniles. We also tested the effect of the position in the invaded range (core vs. periphery) on individual performances. In juveniles, general trends towards higher resistance costs on grass and lower resistance costs on bare soil and asphalt were observed, although not all experiments provided the same cost configurations. Resistance to locomotion varied between age classes, with adults and sub-adults facing lower costs than juveniles, particularly when crossing structurally complex land cover types such as grass and leaf litter. The position in the range had a minor effect on landscape resistance, and only in the dehydration experiment, where water loss in juveniles was lower at the range periphery. Depicting functional connectivity requires (a) assessing multiple dimensions of behavioural and physiological challenges faced by animals during movement; (b) considering factors, such as age and dispersal syndrome, that may affect movement at both individual and population levels. Ignoring this complexity might generate unreliable connectivity models and provide unsupported management recommendations for conservation.
Collapse
Affiliation(s)
| | - Natasha Kruger
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France.,Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Jean Secondi
- Faculté des Sciences, Université d'Angers, Angers, France.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| |
Collapse
|
10
|
Ginal P, Moreira FD, Marques R, Rebelo R, Rödder D. Predicting terrestrial dispersal corridors of the invasive African clawed frog Xenopus laevis in Portugal. NEOBIOTA 2021. [DOI: 10.3897/neobiota.64.60004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive species, such as the mainly aquatic African clawed frog Xenopus laevis, are a main threat to global biodiversity. The identification of dispersal corridors is necessary to restrict further expansion of these species and help to elaborate management plans for their control and eradication. Here we use remote sensing derived resistance surfaces, based on the normalised difference vegetation index (NDVI) and the normalised difference water index (NDWI) accounting for behavioural and physiological dispersal limitations of the species, in combination with elevation layers, to determine fine scale dispersal patterns of invasive populations of X. laevis in Portugal, where the frog had established populations in two rivers. We reconstruct past dispersal routes between these two invaded rivers and highlight high risk areas for future expansion. Our models suggest terrestrial dispersal corridors that connect both invaded rivers and identify artificial water bodies as stepping stones for overland movement of X. laevis. Additionally, we found several potential stepping stones into novel areas and provide concrete information for invasive species management.
Collapse
|
11
|
Rais M, Ahmed W. Amphibian Dispersal Among Terrestrial Habitats and Wetlands in a Landscape. ENCYCLOPEDIA OF THE UN SUSTAINABLE DEVELOPMENT GOALS 2021. [DOI: 10.1007/978-3-319-71065-5_151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
12
|
Ginal P, Mokhatla M, Kruger N, Secondi J, Herrel A, Measey J, Rödder D. Ecophysiological models for global invaders: Is Europe a big playground for the African clawed frog? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:158-172. [PMID: 33264517 DOI: 10.1002/jez.2432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/18/2020] [Accepted: 11/15/2020] [Indexed: 11/06/2022]
Abstract
One principle threat prompting the worldwide decline of amphibians is the introduction of nonindigenous amphibians. The African Clawed Frog, Xenopus laevis, is now one of the widest distributed amphibians occurring on four continents with ongoing range expansion including large parts of Europe. Species distribution models (SDMs) are essential tools to predict the invasive risk of these species. Previous efforts have focused on correlative approaches but these can be vulnerable to extrapolation errors when projecting species' distributions in nonnative ranges. Recent developments emphasise more robust process-based models, which use physiological data like critical thermal limits and performance, or hybrid models using both approaches. Previous correlative SDMs predict different patterns in the potential future distribution of X. laevis in Europe, but it is likely that these models do not assess its full invasive potential. Based on physiological performance trials, we calculate size and temperature-dependent response surfaces, which are scaled to geographic performance layers matching the critical thermal limits. We then use these ecophysiological performance layers in a standard correlative SDM framework to predict the potential distribution in southern Africa and Europe. Physiological performance traits (standard metabolic rate and endurance time of adult frogs) are the main drivers for the predicted distribution, while the locomotor performance (maximum velocity and distance moved in 200 ms) of adults and tadpoles have low contributions.
Collapse
Affiliation(s)
- Philipp Ginal
- Herpetological Section, Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Bonn, Germany
| | - Mohlamatsane Mokhatla
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.,Rondevlei Scientific Services, Garden Route National Park, South African National Parks, Sedgefield, South Africa
| | - Natasha Kruger
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.,Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Jean Secondi
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France.,Faculté des Sciences, Université d'Angers, Angers, France
| | - Anthony Herrel
- Département Adaptations du Vivant, MECADEV UMR7179 CNRS/MNHN, Paris, France
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Dennis Rödder
- Herpetological Section, Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Bonn, Germany
| |
Collapse
|
13
|
Diversity of Parasites from Xenopus Laevis (Amphibia: Pipidae) and their Seasonal Rate of Infection in Selected Habitats in the Limpopo Province, South Africa. Helminthologia 2020; 57:252-267. [PMID: 32855613 PMCID: PMC7425233 DOI: 10.2478/helm-2020-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/08/2020] [Indexed: 11/20/2022] Open
Abstract
This study determined the diversity and seasonality of parasites species of the African clawed frog, Xenopus laevis (Daudin, 1802), from three localities, namely Modjadjikloof, Mokopane and University of Limpopo, Limpopo Province, South Africa. A total of seven parasite species were collected and identified. They included two nematodes, Camallanus kaapstaadi Southwell & Kirshner, 1937 and Batrachocamallanus slomei (Southwell & Kirshner, 1937), a monogenean, Protopolystoma xenopodis (Price, 1943), a cestode, Cephalochlamys namaquensis (Cohn, 1906), a protozoan, Trichodina xenopodos Fantham, 1924, two digeneans, Progonimodiscus doyeri Ortlepp, 1926 and Dollfuschella rodhaini Vercammen-Grandjean, 1960. The most common and abundant parasite species by far were Cm. kaapstaadi, B. slomei and Cp. namaquensis, with Cm. kaapstaadi, B. slomei present in all localities. Trichodina xenopodos was a rare species, only present in host populations from Modjadjiskloof. Modjadjiskloof had the highest species richness (all seven parasite species) followed by Mokopane (five parasite species) and University of Limpopo (3 parasite species). There were also higher infection levels (prevalence and mean intensity) of Cm. kaapstaadi, B. slomei, Cp. namaquensis and Pt. xenopodis in hosts from Modjadjiskloof while Pd. doyeri and D. rodhaini infection levels were greater in Mokopane. The variability between localities shows that parasites with heteroxenous life cycles are more strongly associated with more pristine habitats. The variability in calculated indices (prevalence and mean intensity) also suggests that the occurrence of some of the parasites is affected by season, favouring higher infection rates during summer. This suggests that temperature has a direct role in the reproductive and developmental processes of these parasites. Neither length nor sex had an influence on the prevalence or intensity of parasites.
Collapse
|
14
|
Schoeman AL, Joubert TL, du Preez LH, Svitin R. Xenopus laevis as UberXL for nematodes. AFRICAN ZOOLOGY 2020. [DOI: 10.1080/15627020.2019.1681295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Anneke L Schoeman
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Centre of Excellence for Invasion Biology, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Tracy-Lee Joubert
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Louis H du Preez
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- South African Institute for Aquatic Biodiversity, Grahamstown, South Africa
| | - Roman Svitin
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- South African Institute for Aquatic Biodiversity, Grahamstown, South Africa
- Department of Invertebrate Fauna and Systematics, II Schmalhausen Institute of Zoology, Kyiv, Ukraine
| |
Collapse
|
15
|
Courant J, Secondi J, Guillemet L, Vollette E, Herrel A. Rapid changes in dispersal on a small spatial scale at the range edge of an expanding population. Evol Ecol 2019. [DOI: 10.1007/s10682-019-09996-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Repeated reduction in parasite diversity in invasive populations of Xenopus laevis: a global experiment in enemy release. Biol Invasions 2019. [DOI: 10.1007/s10530-018-1902-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Thorp CJ, Alexander ME, Vonesh JR, Measey J. Size-dependent functional response of Xenopus laevis feeding on mosquito larvae. PeerJ 2018; 6:e5813. [PMID: 30386704 PMCID: PMC6204824 DOI: 10.7717/peerj.5813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022] Open
Abstract
Predators can play an important role in regulating prey abundance and diversity, determining food web structure and function, and contributing to important ecosystem services, including the regulation of agricultural pests and disease vectors. Thus, the ability to predict predator impact on prey is an important goal in ecology. Often, predators of the same species are assumed to be functionally equivalent, despite considerable individual variation in predator traits known to be important for shaping predator–prey interactions, like body size. This assumption may greatly oversimplify our understanding of within-species functional diversity and undermine our ability to predict predator effects on prey. Here, we examine the degree to which predator–prey interactions are functionally homogenous across a natural range of predator body sizes. Specifically, we quantify the size-dependence of the functional response of African clawed frogs (Xenopus laevis) preying on mosquito larvae (Culex pipiens). Three size classes of predators, small (15–30 mm snout-vent length), medium (50–60 mm) and large (105–120 mm), were presented with five densities of prey to determine functional response type and to estimate search efficiency and handling time parameters generated from the models. The results of mesocosm experiments showed that type of functional response of X. laevis changed with size: small predators exhibited a Type II response, while medium and large predators exhibited Type III responses. Functional response data showed an inversely proportional relationship between predator attack rate and predator size. Small and medium predators had highest and lowest handling time, respectively. The change in functional response with the size of predator suggests that predators with overlapping cohorts may have a dynamic impact on prey populations. Therefore, predicting the functional response of a single size-matched predator in an experiment may misrepresent the predator’s potential impact on a prey population.
Collapse
Affiliation(s)
- Corey J Thorp
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Mhairi E Alexander
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa.,Institute for Biomedical and Environmental Health Research (IBEHR), School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| | - James R Vonesh
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa.,Department of Biology, Virginia Commonwealth University, Richmond, VA, USA.,Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - John Measey
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|