1
|
Pei X, Zhu J, Wang Y, Zhang F, He Y, Li Y, Si Y. Placental galectins: a subfamily of galectins lose the ability to bind β-galactosides with new structural features†. Biol Reprod 2023; 109:799-811. [PMID: 37672213 DOI: 10.1093/biolre/ioad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023] Open
Abstract
Galectins are a phylogenetically conserved family of soluble β-galactoside binding proteins. There are 16 different of galectins, each with a specific function determined by its distinct distribution and spatial structure. Galectin-13, galectin-14, and galectin-16 are distinct from other galectin members in that they are primarily found in placental tissue. These galectins, also referred to as placental galectins, play critical roles in regulating pregnancy-associated processes, such as placenta formation and maternal immune tolerance to the embedded embryo. The unique structural characteristics and the inability to bind lactose of placental galectins have recently received significant attention. This review primarily examines the novel structural features of placental galectins, which distinguish them from the classic galectins. Furthermore, it explores the correlation between these structural features and the loss of β-galactoside binding ability. In addition, the newly discovered functions of placental galectins in recent years are also summarized in our review. A detailed understanding of the roles of placental galectins may contribute to the discovery of new mechanisms causing numerous pregnancy diseases and enable the development of new diagnostic and therapeutic strategies for the treatment of these diseases, ultimately benefiting the health of mothers and offspring.
Collapse
Affiliation(s)
- Xuejing Pei
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Xuzhou Tongshan Maocun High School, Xuzhou 221135, China
| | - Jiahui Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuchen Wang
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Fali Zhang
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Yufeng He
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Yuchun Li
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Yunlong Si
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
2
|
Liu G, Liu Q, Han Z, Wang P, Li Y. Comparative proteomics analysis of adult Haemonchus contortus isolates from Ovis ammon. Front Cell Infect Microbiol 2023; 13:1087210. [PMID: 37009511 PMCID: PMC10061303 DOI: 10.3389/fcimb.2023.1087210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/19/2023] [Indexed: 03/18/2023] Open
Abstract
Haemonchus contortus is an important parasite that causes disease that seriously endangers ruminant animals cattle, sheep, goat, and camel. Here, we compared the proeomics analysis of three adult Haemonchus contortus isolates from mouflons (Ovis ammon). A total of 1,299 adult worm proteins were identified, and 461 proteins were quantified, of which 82 (108), 83 (97), and 97 (86) significantly upregulated (downregulated) differentially expressed proteins (DEPs) were detected among pairwise comparisons (1-vs.-3, 2-vs.-3, and 2-vs.-1). Liquid chromatography–tandem mass spectrometry (LC−MS/MS) and bioinformatic analysis indicated that these DEPs are mainly concentrated in cellular composition, molecular function, biological function, and catabolism pathways. In addition, Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were carried out to screen the DEPs. The main biological processes involved were nucleotide, nucleotide phosphate, ribonucleotide, purine-containing compound, purine ribonucleotide, single-organism, oxoacid, organic, carboxylic, oxoacid metabolic processes and single-organism catabolic processes. The majority of KEGG pathways were found to be related to metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of antibiotics, carbon metabolism, and microbial metabolism in diverse environments. Moreover, we also found differences in the expression of some important or novel regulatory proteases, such as serine hydroxymethyl transferase (SHMT), dihydrolipoyl dehydrogenase (DLD), and transket pyr domain-containing protein (TKPD). In summary, label-free proteomic analysis of adult H. contortus worms displayed significant differences in three different individual isolates, which helps to improve our understanding of the growth and metabolic mechanisms of H. contortus in different individuals and relative natural environments and provides novel drug targets for the treatment of parasitic diseases.
Collapse
Affiliation(s)
- Gongzhen Liu
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, China
- *Correspondence: Gongzhen Liu,
| | - Qing Liu
- Jinan Park Development Service Center, Jinan, Shandong, China
| | - Zhaoqing Han
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, China
| | - Peikun Wang
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, China
| | - Yanshen Li
- Department of Marine Product Quality and Safety Inspection Key Laboratory, Yantai University, Yantai, Shandong, China
| |
Collapse
|
3
|
Identification of Somatic Proteins in Haemonchus Contortus Infective Larvae (L 3) and Adults. Helminthologia 2022; 59:143-151. [PMID: 36118367 PMCID: PMC9444209 DOI: 10.2478/helm-2022-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/05/2022] [Indexed: 11/26/2022] Open
Abstract
Haemonchus contortus is considered the most pathogenic nematode in sheep production systems based on grazing. Comparing infective larvae (L3) with adult parasites can lead to the identification of proteins that play an important role in parasite-host interactions. In this study, we report a list of H. contortus somatic proteins and made a comparative analysis of somatic proteins of L3 and adult worms. L3 and adult parasites were subjected to protein extraction and subsequently to peptide fractionation. Peptides were analysed by mass spectrometry and LC-MS/MS data analysis. Data analysis and search on SEQUEST and MASCOT against H. contortus from the WormBase ParaSite database resulted in the identification of 775 unique peptide sequences corresponding to 227 proteins at 1 % FDR. From these, 18 proteins were specific to L3 and 63 to adult parasites. The gene ontology (GO) enrichment analysis of the proteins specific to L3 and adult worms to gain insight into cellular components, molecular functions and biological processes that affect the parasite-host interaction showed some differences between the two parasite stages. The list of proteins found provides a database to identify target proteins that could be useful as biomarkers of the infection or in the generation of anthelmintic drugs that inhibit proteins essential for the establishment of the infection and the survival of adult parasites. They can also serve as new candidates for vaccine research.
Collapse
|
4
|
Swan J, Sakthivel D, Beddoe T, Stear M, Piedrafita D, Preston S. Evaluation of the Role of Galectins in Parasite Immunity. Methods Mol Biol 2022; 2442:475-515. [PMID: 35320542 DOI: 10.1007/978-1-0716-2055-7_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Galectin-11 (LGALS-11) and galectin-14 (LGALS-14) are ruminant specific galectins, first reported in sheep. Although their roles in parasite immunity are still being elucidated, it appears that they influence protection against parasites. In gastrointestinal infections with the nematode Haemonchus contortus, both galectin-11 and galectin-14 appear to be protective. However, in a chronic infection of liver fluke, Fasciola hepatica, these galectins may aid parasite survival. To unravel the structural, functional, and ligand profile of galectin-11 and galectin-14, recombinant production of these proteins is vital. Here we present the recombinant production of soluble galectin-11 and galectin-14 from domestic sheep for in vitro and structural biology studies. These methods include parasite cultivation and infection, galectin staining of host and parasite tissue, surface staining of parasites with recombinant galectins, pull-down assays to identify endogenous galectin binding proteins, and in vitro assays to monitor the effect of galectins on parasite development.
Collapse
Affiliation(s)
- Jaclyn Swan
- Department of Animal, Plant and Soil Science and Centre for Agri Bioscience (Agri Bio), La Trobe University, Melbourne, VIC, Australia
| | - Dhanasekaran Sakthivel
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science and Centre for Agri Bioscience (Agri Bio), La Trobe University, Melbourne, VIC, Australia
| | - Michael Stear
- Department of Animal, Plant and Soil Science and Centre for Agri Bioscience (Agri Bio), La Trobe University, Melbourne, VIC, Australia
| | - David Piedrafita
- School of Science, Psychology and Sport, Federation University Australia, Mt Helen, VIC, Australia
| | - Sarah Preston
- School of Science, Psychology and Sport, Federation University Australia, Mt Helen, VIC, Australia.
| |
Collapse
|
5
|
Donskow-Łysoniewska K, Maruszewska-Cheruiyot M, Stear M. The interaction of host and nematode galectins influences the outcome of gastrointestinal nematode infections. Parasitology 2021; 148:648-654. [PMID: 33461629 PMCID: PMC11010190 DOI: 10.1017/s003118202100007x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Galectins are a family of proteins that bind β-galactosides and play key roles in a variety of cellular processes including host defence. They have been well studied in hosts but less so in gastrointestinal nematodes. Both host and parasite galectins are present in the gastrointestinal tract following infection. Parasite galectins can both bind antibody, especially highly glycosylated IgE and be bound by antibody. Parasite galectins may act as molecular sponges that soak up antibody. Host galectins promote mast cell degranulation while parasite galectins inhibit degranulation. Host and parasite galectins can also bind mucins and influence mucus viscosity. As the protective response against gastrointestinal nematode infection is partly dependent on IgE mediated mast cell degranulation and mucus, the interactions between host and parasite galectins play key roles in determining the outcome of infection.
Collapse
Affiliation(s)
- Katarzyna Donskow-Łysoniewska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163Warsaw, Poland
| | - Marta Maruszewska-Cheruiyot
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163Warsaw, Poland
| | - Michael Stear
- Department of Animal, Plant and Soil Science, Agribio, La Trobe University, Bundoora, VIC3086, Australia
| |
Collapse
|
6
|
Moar P, Tandon R. Galectin-9 as a biomarker of disease severity. Cell Immunol 2021; 361:104287. [PMID: 33494007 DOI: 10.1016/j.cellimm.2021.104287] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022]
Abstract
Galectin-9 (Gal-9) is a β-galactoside binding lectin known for its immunomodulatory role in various microbial infections. Gal-9 is expressed in all organ systems and localized in the nucleus, cell surface, cytoplasm and the extracellular matrix. It mediates host-pathogen interactions and regulates cell signalling via binding to its receptors. Gal-9 is involved in many physiological functions such as cell growth, differentiation, adhesion, communication and death. However, recent studies have emphasized on the elevated levels of Gal-9 in autoimmune disorders, viral infections, parasitic invasion, cancer, acute liver failure, atopic dermatitis, chronic kidney disease, type-2 diabetes, coronary artery disease, atherosclerosis and benign infertility-related gynecological disorders. In this paper we have reviewed the potential of Gal-9 as a reliable, sensitive and non-invasive biomarker of disease severity. Tracking changes in Gal-9 levels and its implementation as a biomarker in clinical practice will be an important tool to monitor disease activity and facilitate personalized treatment decisions.
Collapse
Affiliation(s)
- Preeti Moar
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
7
|
Ngwasiri NN, Brattig NW, Ndjonka D, Liebau E, Paguem A, Leusder D, Kingsley MT, Eisenbarth A, Renz A, Daniel AM. Galectins from Onchocerca ochengi and O. volvulus and their immune recognition by Wistar rats, Gudali zebu cattle and human hosts. BMC Microbiol 2021; 21:5. [PMID: 33407120 PMCID: PMC7788699 DOI: 10.1186/s12866-020-02064-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background During the last two decades research on animal filarial parasites, especially Onchocerca ochengi, infecting cattle in savanna areas of Africa revealed that O. ochengi as an animal model has biological features that are similar to those of O. volvulus, the aetiological agent of human onchocerciasis. There is, however, a paucity of biochemical, immunological and pathological data for O. ochengi. Galectins can be generated by parasites and their hosts. They are multifunctional molecules affecting the interaction between filarial parasites and their mammalian hosts including immune responses. This study characterized O. ochengi galectin, verified its immunologenicity and established its immune reactivity and that of Onchocerca volvulus galectin. Results The phylogenetic analysis showed the high degree of identity between the identified O. ochengi and the O. volvulus galectin-1 (ß-galactoside-binding protein-1) consisting only in one exchange of alanine for serine. O. ochengi galectin induced IgG antibodies during 28 days after immunization of Wistar rats. IgG from O. ochengi-infected cattle and O. volvulus-infected humans cross-reacted with the corresponding galectins. Under the applied experimental conditions in a cell proliferation test, O. ochengi galectin failed to significantly stimulate peripheral blood mononuclear cells (PBMCs) from O. ochengi-infected cattle, regardless of their parasite load. Conclusion An O. ochengi galectin gene was identified and the recombinantly expressed protein was immunogenic. IgG from Onchocerca-infected humans and cattle showed similar cross-reaction with both respective galectins. The present findings reflect the phylogenetic relationship between the two parasites and endorse the appropriateness of the cattle O. ochengi model for O. volvulus infection research. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02064-3.
Collapse
Affiliation(s)
| | - Norbert W Brattig
- Department Molecular Medicine, Bernhard Nocht Institute of Tropical Medicine, Hamburg, Germany
| | | | - Eva Liebau
- University of Muenster, Münster, Germany
| | - Archile Paguem
- University of Ngaoundéré, Ngaoundéré, Cameroon.,Department Comparative Zoology, Eberhard Karls University, Institute of Evolution and Ecology, Tübingen, Germany.,Department of Veterinary Medicine, University of Buea, Buea, Cameroon
| | | | - Manchang Tanyi Kingsley
- Department of Veterinary Medicine, University of Buea, Buea, Cameroon.,Veterinary Research Laboratory, IRAD Wakwa Regional Centre, Ngaoundéré, Cameroon
| | - Albert Eisenbarth
- Department Comparative Zoology, Eberhard Karls University, Institute of Evolution and Ecology, Tübingen, Germany.,Programme Onchocercoses, Station of the University of Tübingen, Ngaoundéré, Cameroon
| | - Alfons Renz
- Department Comparative Zoology, Eberhard Karls University, Institute of Evolution and Ecology, Tübingen, Germany.,Programme Onchocercoses, Station of the University of Tübingen, Ngaoundéré, Cameroon
| | | |
Collapse
|