1
|
Marsicano G, Casartelli L, Federici A, Bertoni S, Vignali L, Molteni M, Facoetti A, Ronconi L. Prolonged neural encoding of visual information in autism. Autism Res 2024; 17:37-54. [PMID: 38009961 DOI: 10.1002/aur.3062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Autism spectrum disorder (ASD) is associated with a hyper-focused visual attentional style, impacting higher-order social and affective domains. The understanding of such peculiarity can benefit from the use of multivariate pattern analysis (MVPA) of high-resolution electroencephalography (EEG) data, which has proved to be a powerful technique to investigate the hidden neural dynamics orchestrating sensory and cognitive processes. Here, we recorded EEG in typically developing (TD) children and in children with ASD during a visuo-spatial attentional task where attention was exogenously captured by a small (zoom-in) or large (zoom-out) cue in the visual field before the appearance of a target at different eccentricities. MVPA was performed both in the cue-locked period, to reveal potential differences in the modulation of the attentional focus, and in the target-locked period, to reveal potential cascade effects on stimulus processing. Cue-locked MVPA revealed that while in the TD group the pattern of neural activity contained information about the cue mainly before the target appearance, the ASD group showed a temporally sustained and topographically diffuse significant decoding of the cue neural response even after the target onset, suggesting a delayed extinction of cue-related neural activity. Crucially, this delayed extinction positively correlated with behavioral measures of attentional hyperfocusing. Results of target-locked MVPA were coherent with a hyper-focused attentional profile, highlighting an earlier and stronger decoding of target neural responses in small cue trials in the ASD group. The present findings document a spatially and temporally overrepresented encoding of visual information in ASD, which can constitute one of the main reasons behind their peculiar cognitive style.
Collapse
Affiliation(s)
- Gianluca Marsicano
- Department of Psychology, University of Bologna, Bologna, Italy
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Casartelli
- Child Psychopathology Department, Theoretical and Cognitive Neuroscience Unit, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | | | - Sara Bertoni
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova, Italy
| | | | - Massimo Molteni
- Child Psychopathology Department, Theoretical and Cognitive Neuroscience Unit, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Andrea Facoetti
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova, Italy
| | - Luca Ronconi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Behavioural and electrophysiological evidence for the effect of target-distractor separation in a tactile search task. Biol Psychol 2021; 162:108098. [PMID: 33901576 DOI: 10.1016/j.biopsycho.2021.108098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 03/23/2021] [Accepted: 04/21/2021] [Indexed: 01/06/2023]
Abstract
Evidence suggests that the N140cc component of event-related potentials (ERP) observed in tactile search tasks reflects the attentional selection of the target. Here, we investigated whether the target selection processes are affected by the separation between the target and an ipsilateral singleton distractor (singletons delivered to contiguous or non-contiguous fingers of the same hand). In addition, the external distance between search items was varied through posture (splayed or touching fingers). Accuracy improved when target and distractor were delivered to contiguous fingers that were also touching. Regardless of target-distractor separation, the N140cc was larger when the external distance between search-array stimuli decreased (touching fingers). Importantly, a smaller N140cc was observed at reduced target-distractor separations, suggesting a narrower attentional focus for contiguous singletons. These findings reveal that the mechanisms responsible for tactile target selection in the presence of an ipsilateral singleton distractor are fundamentally different from those emerged in vision.
Collapse
|
3
|
Using Partial Directed Coherence to Study Alpha-Band Effective Brain Networks during a Visuospatial Attention Task. Behav Neurol 2019; 2019:1410425. [PMID: 31565094 PMCID: PMC6745104 DOI: 10.1155/2019/1410425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/20/2019] [Accepted: 06/10/2019] [Indexed: 12/29/2022] Open
Abstract
Previous studies have shown that the neural mechanisms underlying visual spatial attention rely on top-down control information from the frontal and parietal cortexes, which ultimately amplifies sensory processing of stimulus occurred at the attended location relative to those at unattended location. However, the modulations of effective brain networks in response to stimulus at attended and unattended location are not yet clear. In present study, we collected event-related potentials (ERPs) from 15 subjects during a visual spatial attention task, and a partial directed coherence (PDC) method was used to construct alpha-band effective brain networks of two conditions (targets at attended and nontargets at unattended location). Flow gain mapping, effective connectivity pattern, and graph measures including clustering coefficient (C), characteristic path length (L), global efficiency (Eglobal), and local efficiency (Elocal) were compared between two conditions. Flow gain mapping showed that the frontal region seemed to serve as the main source of information transmission in response to targets at attended location while the parietal region served as the main source in nontarget condition. Effective connectivity pattern indicated that in response to targets, there existed obvious top-down connections from the frontal, temporal, and parietal cortexes to the visual cortex compared with in response to nontargets. Graph theory analysis was used to quantify the topographical properties of the brain networks, and results revealed that in response to targets, the brain networks were characterized by significantly smaller characteristic path length and larger global efficiency than in response to nontargets. Our findings suggested that smaller characteristic path length and larger global efficiency could facilitate global integration of information and provide a substrate for more efficient perceptual processing of targets at attended location compared with processing of nontargets at ignored location, which revealed the neural mechanisms underlying visual spatial attention from the perspective of effective brain networks and graph theory for the first time and opened new vistas to interpret a cognitive process.
Collapse
|