1
|
Hu MY, Yu J, Lin JQ, Fang SG. Sex-Biased miRNAs in the Gonads of Adult Chinese Alligator ( Alligator sinensis) and Their Potential Roles in Sex Maintenance. Front Genet 2022; 13:843884. [PMID: 35432471 PMCID: PMC9008718 DOI: 10.3389/fgene.2022.843884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNA (miRNA) is a category of single-stranded non-coding small RNA (sRNA) that regulates gene expression by targeting mRNA. It plays a key role in the temperature-dependent sex determination of Chinese alligator (Alligator sinensis), a reptile whose sex is determined solely by the temperature during the incubation period and remains stable thereafter. However, the potential function of miRNAs in the gonads of adult Chinese alligators is still unclear. Here, we prepared and sequenced sRNA libraries of adult female and male alligator gonads, from breeding (in summer) and hibernating (in winter) animals. We obtained 130 conserved miRNAs and 683 novel miRNAs, which were assessed for sex bias in summer and winter; a total of 65 miRNAs that maintained sex bias in both seasons were identified. A regulatory network of sex-biased miRNAs and genes was constructed. Sex-biased miRNAs targeted multiple genes in the meiosis pathway of adult Chinese alligator oocytes and the antagonistic gonadal function maintenance pathway, such as MOS, MYT1, DMRT1, and GDF9. Our study emphasizes the function of miRNA in the epigenetic mechanisms of sex maintenance in crocodilians.
Collapse
Affiliation(s)
- Meng-Yuan Hu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jun Yu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Qing Lin
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Jiang L, Yang H, Chen T, Zhu X, Ye J, Lv K. Identification of HMG-box family establishes the significance of SOX6 in the malignant progression of glioblastoma. Aging (Albany NY) 2020; 12:8084-8106. [PMID: 32388501 PMCID: PMC7244032 DOI: 10.18632/aging.103127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant neuroepithelial primary brain tumor and its mean survival time is 15 months after diagnosis. This study undertook to investigate the genome-wide and transcriptome-wide analyses of human high mobility group box (HMG-box) TF (transcript factor) families / HOX, TOX, FOX, HMG and SOX gene families, and their relationships to GBM. According to the TCGA-GBM profile analysis, differentially expressed HOX, FOX, HMG and SOX gene families (62 DEmRNA) were found in this study. We also analyzed DEmRNA (HMG-box related genes) co-expressed eight DElncRNA in GBM, and constructed a ceRNA network analysis as well. We constructed 50 DElncRNA-DEmiRNA-DEmRNA (HMG-box related genes) pairs between GBM and normal tissues. Then, risk genes SOX6 and SOX21 expression were correlated with immune infiltration levels in GBM. SOX6 also had a strong association with MAPT, GSK3B, FYN and DPYSL4, suggesting that they might be functional members in GBM.
Collapse
Affiliation(s)
- Lan Jiang
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
| | - Hui Yang
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
| | - Tianbing Chen
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
| | - Xiaolong Zhu
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
| | - Jingjing Ye
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
| | - Kun Lv
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
3
|
Xiong L, Yang M, Zheng K, Wang Z, Gu S, Tong J, Liu J, Shah NA, Nie L. Comparison of Adult Testis and Ovary MicroRNA Expression Profiles in Reeves' Pond Turtles ( Mauremys reevesii) With Temperature-Dependent Sex Determination. Front Genet 2020; 11:133. [PMID: 32194623 PMCID: PMC7061903 DOI: 10.3389/fgene.2020.00133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Some differentially expressed genes (DEGs) that encode key enzymes involved in steroidogenic biosynthesis (CYP19A1) and key molecules related to gonadal functions (DMRT1, SOX9, AMH, FOXL2, WNT4, RSPO2, and GDF9) have been identified in adult gonadal RNA-seq studies of Reeves' pond turtle (Mauremys reevesii) with temperature-dependent sex determination (TSD). Gonadal functional maintenance and gametogenesis comprises a highly regulated and coordinated biological process, and increasing evidence indicates that microRNAs (miRNAs) may be involved in this dynamic program. However, it is not clear how the regulatory network comprising miRNAs changes the expression levels of these genes. In this study, miRNA sequencing of adult testis and ovary tissues from M. reevesii detected 25 known and 379 novel miRNAs, where 60 miRNAs were differentially expressed in the testis and ovary. A total of 1,477 target genes based on the differentially expressed miRNAs were predicted, where 221 target genes also exhibited differential expression. To verify the accuracy of the sequencing data, 10 differentially expressed miRNAs were validated by quantitative reverse transcription real-time PCR, and were found to be consistent with the transcriptome sequencing results. Moreover, several miRNA/target gene pairs, i.e., mre-let-7a-5p/mre-let-7e-5p and CYP19A1, mre-miR-200a-3p and DMRT1, mre-miR-101-3p and SOX9, and mre-miR-138-5p and AMH were identified. To explore the regulatory role of miRNAs, we conducted target gene enrichment analysis of the miRNAs and 221 target genes in the regulatory network. The signaling pathways related to gonadal functional maintenance and gametogenesis based on the DEGs and target genes were then compared. Our findings provide crucial information to facilitate further research into the regulatory mechanisms involving miRNAs in turtle species with TSD.
Collapse
Affiliation(s)
- Lei Xiong
- Life Science College, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, China.,Biochemistry Department, Wannan Medical College, Wuhu, China
| | - Mengli Yang
- Life Science College, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, China
| | - Kai Zheng
- Life Science College, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, China
| | - Ziming Wang
- Life Science College, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, China
| | - Shengli Gu
- Life Science College, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, China.,Biochemistry Department, Wannan Medical College, Wuhu, China
| | - Jiucui Tong
- Life Science College, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, China.,Biochemistry Department, Wannan Medical College, Wuhu, China
| | - Jianjun Liu
- Life Science College, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, China
| | - Nadar Ali Shah
- Life Science College, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, China
| | - Liuwang Nie
- Life Science College, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, China
| |
Collapse
|
4
|
Malek I, Haim A, Izhaki I. Melatonin mends adverse temporal effects of bright light at night partially independent of its effect on stress responses in captive birds. Chronobiol Int 2019; 37:189-208. [DOI: 10.1080/07420528.2019.1698590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- I. Malek
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - A. Haim
- The Israeli Centre for Interdisciplinary Research in Chronobiology, University of Haifa, Haifa, Israel
| | - I. Izhaki
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
5
|
Jiang L, Bi D, Ding H, Ren Q, Wang P, Kan X. Identification and comparative profiling of gonadal microRNAs in the adult pigeon ( Columba livia). Br Poult Sci 2019; 60:638-648. [PMID: 31343256 DOI: 10.1080/00071668.2019.1639140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. MicroRNAs are small noncoding RNA molecules that play crucial roles in gene expression. However, the comparative profiling of testicular and ovarian microRNAs in birds are rarely reported, particularly in pigeon.2. In this study, Illumina next-generation sequencing technology was used to sequence miRNA libraries of the gonads from six healthy adult utility pigeons. A total of 344 conserved known miRNAs and 32 novel putative miRNAs candidates were detected. Compared with those of ovaries, 130 differentially expressed (DE) miRNAs were identified in the testes. Among them, 70 miRNAs showed down-regulation in the ovaries, while another 60 miRNAs were up-regulated.3. Combining the results of the expression of target gene measurements and pathway enrichment analyses, it was revealed that some DEmiRNAs from the gonad samples involved in sexual differentiation and development (such as cli-miR-210-3p and cli-miR-214-3p) could down-regulate AR (androgen receptor). Cli-miR-181b-5p, cli-miR-9622-3p and cli-miR-145-5p were highly expressed in both the ovaries and testes, which could co-target HOXC9, and were related to regulation of primary metabolic processes. KEGG enrichment analysis showed that DEmiRNAs may play biological and sex-related roles in pigeon gonads.4. The expression profiles of testicular and ovarian miRNA in adult pigeon gonads are presented for the first time, and the findings may contribute to a better understanding of gonadal expression in poultry.
Collapse
Affiliation(s)
- L Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - D Bi
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - H Ding
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Q Ren
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - P Wang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - X Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
6
|
Jiang L, Bi D, Ding H, Wu X, Zhu R, Zeng J, Yang X, Kan X. Systematic Identification and Evolution Analysis of Sox Genes in Coturnix japonica Based on Comparative Genomics. Genes (Basel) 2019; 10:genes10040314. [PMID: 31013663 PMCID: PMC6523956 DOI: 10.3390/genes10040314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 01/04/2023] Open
Abstract
Coturnix japonica (Japanese quail) has been extensively used as a model animal for biological studies. The Sox gene family, which was systematically characterized by a high-mobility group (HMG-box) in many animal species, encodes transcription factors that play central roles during multiple developmental processes. However, genome-wide investigations on the Sox gene family in birds are scarce. In the current study, we first performed a genome-wide study to explore the Sox gene family in galliform birds. Based on available genomic sequences retrieved from the NCBI database, we focused on the global identification of the Sox gene family in C. japonica and other species in Galliformes, and the evolutionary relationships of Sox genes. In our result, a total of 35 Sox genes in seven groups were identified in the C. japonica genome. Our results also revealed that dispersed gene duplications contributed the most to the expansion of the Sox gene family in Galliform birds. Evolutionary analyses indicated that Sox genes are an ancient gene family, and strong purifying selections played key roles in the evolution of CjSox genes of C. japonica. More interestingly, we observed that most Sox genes exhibited highly embryo-specific expression in both gonads. Our findings provided new insights into the molecular function and phylogeny of Sox gene family in birds.
Collapse
Affiliation(s)
- Lan Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650000, China.
| | - De Bi
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Hengwu Ding
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, 241000, China.
| | - Xuan Wu
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Ran Zhu
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Juhua Zeng
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Xiaojun Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650000, China.
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, 241000, China.
| |
Collapse
|
7
|
Cao Y, Meng D, Chen T, Chen Y, Zeng W, Zhang L, Wang Q, Hen W, Abdullah M, Jin Q, Lin Y, Cai Y. Metacaspase gene family in Rosaceae genomes: Comparative genomic analysis and their expression during pear pollen tube and fruit development. PLoS One 2019; 14:e0211635. [PMID: 30794567 PMCID: PMC6386261 DOI: 10.1371/journal.pone.0211635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Metacaspase (MC), which is discovered gene family with distant caspase homologs in plants, fungi, and protozoa, may be involved in programmed cell death (PCD) processes during plant development and respond abiotic and biotic stresses. To reveal the evolutionary relationship of MC gene family in Rosaceae genomes, we identified 8, 7, 8, 12, 12, and 23 MC genes in the genomes of Fragaria vesca, Prunus mume, Prunus persica, Pyrus communis, Pyrus bretschneideri and Malus domestica, respectively. Phylogenetic analysis suggested that the MC genes could be grouped into three clades: Type I*, Type I and Type II, which was supported by gene structure and conserved motif analysis. Microsynteny analysis revealed that MC genes present in the corresponding syntenic blocks of P. communis, P. bretschneideri and M. domestica, and further suggested that large-scale duplication events play an important role in the expansion of MC gene family members in these three genomes than other Rosaceae plants (F. vesca, P. mume and P. persica). RNA-seq data showed the specific expression patterns of PbMC genes in response to drought stress. The expression analysis of MC genes demonstrated that PbMC01 and PbMC03 were able to be detected in all four pear pollen tubes and seven fruit development stages. The current study highlighted the evolutionary relationship and duplication of the MC gene family in these six Rosaceae genomes and provided appropriate candidate genes for further studies in P. bretschneideri.
Collapse
Affiliation(s)
- Yunpeng Cao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Dandan Meng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Tianzhe Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yu Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Wei Zeng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Lei Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qi Wang
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Wei Hen
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Muhammad Abdullah
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qing Jin
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yi Lin
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|