1
|
Hung YL, Hong SF, Wei WL, Cheng S, Yu JZ, Tjita V, Yong QY, Nishihama R, Kohchi T, Bowman JL, Chien YC, Chiu YH, Yang HC, Lu MYJ, Pan ZJ, Wang CN, Lin SS. Dual Regulation of Cytochrome P450 Gene Expression by Two Distinct Small RNAs, a Novel tasiRNA and miRNA, in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:1115-1134. [PMID: 38545690 DOI: 10.1093/pcp/pcae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 07/31/2024]
Abstract
The miR390-derived TAS3 trans-acting short-interfering RNAs (tasiRNAs) module represents a conserved RNA silencing pathway in the plant kingdom; however, its characterization in the bryophyte Marchantia polymorpha is limited. This study elucidated that MpDCL4 processes MpTAS3 double-stranded RNA (dsRNA) to generate tasiRNAs, primarily from the 5'- and 3'-ends of dsRNA. Notably, we discovered a novel tasiRNA, tasi78A, which can negatively regulate a cytochrome P450 gene, MpCYP78A101. Additionally, tasi78A was abundant in MpAGO1, and transient expression assays underscored the role of tasi78A in repressing MpCYP78A101. A microRNA, miR11700, also regulates MpCYP78A101 expression. This coordinate regulation suggests a role in modulating auxin signaling at apical notches of gemma, influencing the growth and sexual organ development of M. polymorpha and emphasizing the significance of RNA silencing in MpCYP78A101 regulation. However, phylogenetic analysis identified another paralog of the CYP78 family, Mp1g14150, which may have a redundant role with MpCYP78A101, explaining the absence of noticeable morphological changes in loss-of-function plants. Taken together, our findings provide new insights into the combined regulatory roles of miR390/MpTAS3/miR11700 in controlling MpCYP78A101 and expand our knowledge about the biogenesis and regulation of tasiRNAs in M. polymorpha.
Collapse
Affiliation(s)
- Yu-Ling Hung
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Syuan-Fei Hong
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Wei-Lun Wei
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Shiuan Cheng
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Jia-Zhen Yu
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Veny Tjita
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Qian-Yuan Yong
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC 3800, Australia
| | - Yuan-Chi Chien
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Yen-Hsin Chiu
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
- Seed Improvement and Propagation Station, Council of Agriculture, No.46, Xingzhong St., Xinshe Dist., Taichung City 426015, Taiwan, R.O.C
| | - Ho-Chun Yang
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 11529, Taiwan, R.O.C
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 11529, Taiwan, R.O.C
| | - Zhao-Jun Pan
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Chun-Neng Wang
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan, R.O.C
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 11529, Taiwan
- Center of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| |
Collapse
|
2
|
Barrera-Rojas CH, Otoni WC, Nogueira FTS. Shaping the root system: the interplay between miRNA regulatory hubs and phytohormones. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6822-6835. [PMID: 34259838 DOI: 10.1093/jxb/erab299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
The root system commonly lies underground, where it provides anchorage for the aerial organs, as well as nutrients and water. Both endogenous and environmental cues contribute to the establishment of the root system. Among the endogenous cues, microRNAs (miRNAs), transcription factors, and phytohormones modulate root architecture. miRNAs belong to a subset of endogenous hairpin-derived small RNAs that post-transcriptionally control target gene expression, mostly transcription factors, comprising the miRNA regulatory hubs. Phytohormones are signaling molecules involved in most developmental processes. Some miRNAs and targets participate in more than one hormonal pathway, thereby providing new bridges in plant hormonal crosstalk. Unraveling the intricate network of molecular mechanisms underlying the establishment of root systems is a central aspect in the development of novel strategies for plant breeding to increase yield and optimize agricultural land use. In this review, we summarize recent findings describing the molecular mechanisms associated with the interplay between miRNA regulatory hubs and phytohormones to ensure the establishment of a proper root system. We focus on post-embryonic growth and development of primary, lateral, and adventitious roots. In addition, we discuss novel insights for future research on the interaction between miRNAs and phytohormones in root architecture.
Collapse
Affiliation(s)
- Carlos Hernán Barrera-Rojas
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Wagner Campos Otoni
- Department of Plant Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Fabio Tebaldi Silveira Nogueira
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
3
|
Pradhan M, Rocha C, Halitschke R, Baldwin IT, Pandey SP. microRNA390 modulates Nicotiana attenuata's tolerance response to Manduca sexta herbivory. PLANT DIRECT 2021; 5:e350. [PMID: 34622121 PMCID: PMC8482963 DOI: 10.1002/pld3.350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
miR390 is a highly conserved miRNA in plant lineages known to function in growth and development processes, such as lateral root development, and in responses to salt and metal stress. In the ecological model species, Nicotiana attenuata, miR390's biological function remains unknown, which we explore here with a gain-of-function analysis with plants over-expressing (OE-) N. attenuata miR390 (Na-miR390) in glasshouse and natural environments. OEmiR390 plants showed normal developmental processes, including lateral root formation or reproductive output, in plants grown under standard conditions in the glasshouse. OEmiR390 plants did not have dramatically altered interactions with arbuscular mycorrhizal fungi (AMF), Fusarium pathogens, or herbivores. However, Na-miR390 regulated the plant's tolerance of herbivory. Caterpillar feeding elicits the accumulation of a suite of phytohormones, including auxin and jasmonates, which further regulate host-tolerance. The increase in Na-miR390 abundance reduces the accumulation of auxin but does not influence levels of other phytohormones including jasmonates (JA, JA-Ile), salicylic acid (SA), and abscisic acid (ABA). Na-miR390 overexpression reduces reproductive output, quantified as capsule production, when plants are attacked by herbivores. Exogenous auxin treatments of herbivore-attacked plants restored capsule production to wild-type levels. During herbivory, Na-miR390 transcript abundances are increased; its overexpression reduces the abundances of auxin biosynthesizing YUCCA and ARF (mainly ARF4) transcripts during herbivory. Furthermore, the accumulation of auxin-regulated phenolamide secondary metabolites (caffeoylputrescine, dicaffeoylspermidine) is also reduced. In N. attenuata, miR390 functions in modulating tolerance responses of herbivore-attacked plants.
Collapse
Affiliation(s)
- Maitree Pradhan
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Catarina Rocha
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Rayko Halitschke
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Ian T Baldwin
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Shree P Pandey
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| |
Collapse
|