Adroit B, Hazra T, Denk T, Kumar Sarkar S, Khan MA. Rich specialized insect damage on Pliocene leaves from the Mahuadanr Valley (India) growing under a warm climate with weak seasonality.
Ecol Evol 2024;
14:e11114. [PMID:
38469042 PMCID:
PMC10927363 DOI:
10.1002/ece3.11114]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Plant-insect interactions play a crucial role in shaping terrestrial ecosystems, influencing abundance and distribution of plant species. In the present study, we investigated leaf-mining patterns on fossil leaves from Pliocene strata of the Mahuadanr Valley, Jharkhand, eastern India, deposited under a seasonal tropical climate, and reported complex interactions between plants and insects. We identified 11 distinct mining morphotypes. These morphotypes were mainly found on Dipterocarpaceae, Fabaceae, Lauraceae, and Moraceae; similar mining traces were also observed in the contemporary vegetation surrounding the fossil site. Although mining richness was relatively high, only 2.6% of all leaves in the fossil assemblage were mined. We compared mining richness and abundance values with previously reported values for galling. While richness was slightly lower for galling, almost 50% of all fossil leaves were galled. A literature survey on mining and galling patterns in modern vegetation suggests that there is no global explanation for richness of mining or gall-inducing insects. Thus, low nutrient availability in the ancient forest, dominance of semideciduous leaves with hard texture, and different habitats in the same forest ecosystem, such as well-drained forests and riparian stands, may all have favored different types of specialized plant-insect interactions.
Collapse