1
|
Meinzen TC, Burkle LA, Debinski DM. Roadside habitat: Boon or bane for pollinating insects? Bioscience 2024; 74:54-64. [PMID: 38313561 PMCID: PMC10831221 DOI: 10.1093/biosci/biad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 02/06/2024] Open
Abstract
Pollinators, which provide vital services to wild ecosystems and agricultural crops, are facing global declines and habitat loss. As undeveloped land becomes increasingly scarce, much focus has been directed recently to roadsides as potential target zones for providing floral resources to pollinators. Roadsides, however, are risky places for pollinators, with threats from vehicle collisions, toxic pollutants, mowing, herbicides, and more. Although these threats have been investigated, most studies have yet to quantify the costs and benefits of roadsides to pollinators and, therefore, do not address whether the costs outweigh the benefits for pollinator populations using roadside habitats. In this article, we address how, when, and under what conditions roadside habitats may benefit or harm pollinators, reviewing existing knowledge and recommending practical questions that managers and policymakers should consider when planning pollinator-focused roadside management.
Collapse
Affiliation(s)
- Thomas C Meinzen
- Ecology Department, Montana State University, Bozeman, Montana, United States
| | - Laura A Burkle
- Ecology Department, Montana State University, Bozeman, Montana, United States
| | - Diane M Debinski
- Ecology Department, Montana State University, Bozeman, Montana, United States
| |
Collapse
|
2
|
Schoenfeldt A, Whitney KS. Bumble Bee (Bombus spp.) Abundance in New York Highway Roadsides across Levels of Roadside Mowing and Road Traffic. Northeast Nat (Steuben) 2022. [DOI: 10.1656/045.029.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Alyssa Schoenfeldt
- Environmental Science Program, Rochester Institute of Technology, Rochester NY 14623
| | - Kaitlin Stack Whitney
- Environmental Science Program, Rochester Institute of Technology, Rochester NY 14623
| |
Collapse
|
3
|
Phillips BB, Bullock JM, Gaston KJ, Hudson‐Edwards KA, Bamford M, Cruse D, Dicks LV, Falagan C, Wallace C, Osborne JL. Impacts of multiple pollutants on pollinator activity in road verges. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | | | - Kevin J. Gaston
- Environment and Sustainability Institute University of Exeter Penryn UK
| | | | - Meg Bamford
- Environment and Sustainability Institute University of Exeter Penryn UK
| | - Dave Cruse
- Environment and Sustainability Institute University of Exeter Penryn UK
| | - Lynn V. Dicks
- School of Biological Sciences University of East Anglia Norwich UK
- Department of Zoology University of Cambridge Cambridge UK
| | - Carmen Falagan
- Environment and Sustainability Institute University of Exeter Penryn UK
| | - Claire Wallace
- School of Biological Sciences University of East Anglia Norwich UK
| | - Juliet L. Osborne
- Environment and Sustainability Institute University of Exeter Penryn UK
| |
Collapse
|
4
|
Opedal ØH, Ovaskainen O, Saastamoinen M, Laine AL, van Nouhuys S. Host-plant availability drives the spatiotemporal dynamics of interacting metapopulations across a fragmented landscape. Ecology 2020; 101:e03186. [PMID: 32892363 PMCID: PMC7757193 DOI: 10.1002/ecy.3186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 11/26/2022]
Abstract
The dynamics of ecological communities depend partly on species interactions within and among trophic levels. Experimental work has demonstrated the impact of species interactions on the species involved, but it remains unclear whether these effects can also be detected in long‐term time series across heterogeneous landscapes. We analyzed a 19‐yr time series of patch occupancy by the Glanville fritillary butterfly Melitaea cinxia, its specialist parasitoid wasp Cotesia melitaearum, and the specialist fungal pathogen Podosphaera plantaginis infecting Plantago lanceolata, a host plant of the Glanville fritillary. These species share a network of more than 4,000 habitat patches in the Åland islands, providing a metacommunity data set of unique spatial and temporal resolution. To assess the influence of interactions among the butterfly, parasitoid, and mildew on metacommunity dynamics, we modeled local colonization and extinction rates of each species while including or excluding the presence of potentially interacting species in the previous year as predictors. The metapopulation dynamics of all focal species varied both along a gradient in host plant abundance, and spatially as indicated by strong effects of local connectivity. Colonization and to a lesser extent extinction rates depended also on the presence of interacting species within patches. However, the directions of most effects differed from expectations based on previous experimental and modeling work, and the inferred influence of species interactions on observed metacommunity dynamics was limited. These results suggest that although local interactions among the butterfly, parasitoid, and mildew occur, their roles in metacommunity spatiotemporal dynamics are relatively weak. Instead, all species respond to variation in plant abundance, which may in turn fluctuate in response to variation in climate, land use, or other environmental factors.
Collapse
Affiliation(s)
- Øystein H Opedal
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Department of Biology, Lund University, Lund, SE-223 62, Sweden
| | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, CH-8057, Switzerland
| | - Saskya van Nouhuys
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|