1
|
Jin WT, Guan JY, Dai XY, Wu GJ, Zhang LP, Storey KB, Zhang JY, Zheng RQ, Yu DN. Mitochondrial gene expression in different organs of Hoplobatrachus rugulosus from China and Thailand under low-temperature stress. BMC ZOOL 2022; 7:24. [PMID: 37170336 PMCID: PMC10127437 DOI: 10.1186/s40850-022-00128-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hoplobatrachus rugulosus (Anura: Dicroglossidae) is distributed in China and Thailand and the former can survive substantially lower temperatures than the latter. The mitochondrial genomes of the two subspecies also differ: Chinese tiger frogs (CT frogs) display two identical ND5 genes whereas Thai tiger frogs (TT frogs) have two different ND5 genes. Metabolism of ectotherms is very sensitive to temperature change and different organs have different demands on energy metabolism at low temperatures. Therefore, we conducted studies to understand: (1) the differences in mitochondrial gene expression of tiger frogs from China (CT frogs) versus Thailand (TT frogs); (2) the differences in mitochondrial gene expression of tiger frogs (CT and TT frogs) under short term 24 h hypothermia exposure at 25 °C and 8 °C; (3) the differences in mitochondrial gene expression in three organs (brain, liver and kidney) of CT and TT frogs.
Results
Utilizing RT-qPCR and comparing control groups at 25 °C with low temperature groups at 8 °C, we came to the following results. (1) At the same temperature, mitochondrial gene expression was significantly different in two subspecies. The transcript levels of two identical ND5 of CT frogs were observed to decrease significantly at low temperatures (P < 0.05) whereas the two different copies of ND5 in TT frogs were not. (2) Under low temperature stress, most of the genes in the brain, liver and kidney were down-regulated (except for COI and ATP6 measured in brain and COI measured in liver of CT frogs). (3) For both CT and TT frogs, the changes in overall pattern of mitochondrial gene expression in different organs under low temperature and normal temperature was brain > liver > kidney.
Conclusions
We mainly drew the following conclusions: (1) The differences in the structure and expression of the ND5 gene between CT and TT frogs could result in the different tolerances to low temperature stress. (2) At low temperatures, the transcript levels of most of mitochondrial protein-encoding genes were down-regulated, which could have a significant effect in reducing metabolic rate and supporting long term survival at low temperatures. (3) The expression pattern of mitochondrial genes in different organs was related to mitochondrial activity and mtDNA replication in different organs.
Collapse
|
2
|
Hawkins LJ, Wang M, Zhang B, Xiao Q, Wang H, Storey KB. Glucose and urea metabolic enzymes are differentially phosphorylated during freezing, anoxia, and dehydration exposures in a freeze tolerant frog. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:1-13. [PMID: 30710892 DOI: 10.1016/j.cbd.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 02/08/2023]
Abstract
Vertebrate freeze tolerance requires multiple adaptations underpinned by specialized biochemistry. Freezing of extracellular water leads to intracellular dehydration as pure water is incorporated into growing ice crystals and also results in the cessation of blood supply to tissues, creating an anoxic cellular environment. Hence, the freeze tolerant wood frog, Rana sylvatica, must endure both dehydration and anoxia stresses in addition to freezing. The metabolic responses to freezing, dehydration and anoxia involve both protein/enzyme adaptations and the production of metabolites with metabolic or osmotic functions, particularly glucose and urea. The present study uses a phosphoproteome analysis to examine the differential phosphorylation of metabolic enzymes involved in the production of these two metabolites in liver in response to freezing, anoxia, or dehydration exposures. Our results show stress-specific responses in the abundance of phosphopeptides retrieved from nine glycolytic enzymes and three urea cycle enzymes in liver of wood frogs exposed to 24 h freezing, 24 h anoxia, or dehydration to 40% of total body water loss, as compared with 5 °C acclimated controls. Data show changes in the abundance of phosphopeptides belonging to glycogen phosphorylase (GP) and phosphofructokinase 2 (PFK2) that were consistent with differential phosphorylation control of glycogenolysis and a metabolic block at PFK1 that can facilitate glucose synthesis as the cryoprotectant during freezing. Anoxia-exposed animals showed similar changes in GP phosphorylation but no changes to PFK2; changes that would facilitate mobilization of glycogen as a fermentative fuel for anaerobic glycolysis. Urea is commonly produced as a compatible osmolyte in response to amphibian dehydration. Selected urea cycle enzymes showed small changes in phosphopeptide abundance in response to dehydration, but during freezing differential phosphorylation occurred that may facilitate this ATP expensive process when energy resources are sparse. These results add to the growing body of literature demonstrating the importance and efficiency of reversible protein phosphorylation as a regulatory mechanism allowing animals to rapidly respond to environmental stress.
Collapse
Affiliation(s)
- Liam J Hawkins
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Minjing Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Baowen Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Qi Xiao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Hui Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
3
|
Al-Attar R, Wijenayake S, Storey KB. Metabolic reorganization in winter: Regulation of pyruvate dehydrogenase (PDH) during long-term freezing and anoxia. Cryobiology 2019; 86:10-18. [PMID: 30639451 DOI: 10.1016/j.cryobiol.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
Abstract
Wood frogs, Rana sylvatica, can undergo prolonged periods of whole body freezing during winter, locking as much as 65-70% of total body water into extracellular ice and imposing both anoxia and dehydration on their cells. Metabolic rate depression (MRD) is an adaptation used by R. sylvatica to survive these environmental stresses, where a finite amount of ATP generated through anaerobic metabolism is directed towards maintaining pro-survival functions, while most ATP-expensive cellular processes are temporarily reduced in function. Pyruvate dehydrogenase (PDH) is a vital metabolic enzyme that links anaerobic glycolysis to the aerobic TCA cycle and is an important regulatory site in MRD. PDH enzymatic activity is regulated via reversible protein phosphorylation in response to energetic demands of cells. This study explored the posttranslational regulation of PDH at three serine sites (S232, S293, S300) on the catalytic E1α subunit along with protein expression of four pyruvate dehydrogenase kinases (PDHK1-4) in response to 24 h Freezing, 8 h Thaw, 24 h Anoxia, and 4 h Recovery in the liver and skeletal muscle of R. sylvatica using Luminex multiplex technology and western immunoblotting. Overall, inhibitory regulation of PDH was evident during 24 h Freezing and 24 h Anoxia, which could indicate a notable reduction in glycoytic flux and carbon entry into the tricarboxylic acid cycle as part of MRD. Furthermore, the expression of PDHK1-4 and phosphorylation of PDH at S232, S293, and S300 were highly tissue and stress-specific, indicative of how different tissues respond differently to stress within the same organism.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sanoji Wijenayake
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Center for Environmental Epigenetics and Development, Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
4
|
Green SR, Storey KB. Purification of carbamoyl phosphate synthetase 1 (CPS1) from wood frog (Rana sylvatica) liver and its regulation in response to ice-nucleation and subsequent whole-body freezing. Mol Cell Biochem 2018; 455:29-39. [PMID: 30421312 DOI: 10.1007/s11010-018-3468-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
Abstract
Carbamoyl phosphate synthetase I (CPS1) represents an important regulatory enzyme of the urea cycle that mediates the ATP-driven reaction ligating ammonium, carbonate, and phosphate to form carbamoyl phosphate. The freeze-tolerant wood frog (Rana sylvatica or Lithobates sylvaticus) accumulates high concentrations of urea during bouts of freezing to detoxify any ammonia generated and to contribute as a cryoprotectant thereby helping to avoid freeze damage to cells. Purification of CPS1 to homogeneity from wood frog liver was performed in control and frozen wood frogs by a three-step chromatographic process. The affinity of CPS1 for its three substrates was tested in the purified control and freeze-exposed enzyme under a variety of conditions including the presence and absence of the natural cryoprotectants urea and glucose. The results demonstrated that affinity for ammonium was higher in the freeze-exposed CPS1 (1.26-fold) and that with the addition of 400 mM glucose it displayed higher affinity for ATP (1.30-fold) and the obligate activator N-acetylglutamate (1.24-fold). Denaturation studies demonstrated the freeze-exposed enzyme was less thermally stable than the control with an unfolding temperature approximately 1.5 °C lower (52.9 °C for frozen and 54.4 °C for control). The control form of CPS1 had a significantly higher degree of glutarylated lysine residues (1.42-fold increase) relative to the frozen. The results suggest that CPS1 activation and maintenance of urea cycle activity despite the hypometabolic conditions associated with freezing are important aspects in the metabolic survival strategies of the wood frog.
Collapse
Affiliation(s)
- Stuart R Green
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
5
|
Hadj-Moussa H, Storey KB. Micromanaging freeze tolerance: the biogenesis and regulation of neuroprotective microRNAs in frozen brains. Cell Mol Life Sci 2018; 75:3635-3647. [PMID: 29681008 PMCID: PMC11105625 DOI: 10.1007/s00018-018-2821-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/08/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
When temperatures plummet below 0 °C, wood frogs (Rana sylvatica) can endure the freezing of up to ~ 65% of their body water in extracellular ice masses, displaying no measurable brain activity, no breathing, no movement, and a flat-lined heart. To aid survival, frogs retreat into a state of suspended animation characterized by global suppression of metabolic functions and reprioritization of energy usage to essential survival processes that is elicited, in part, by the regulatory controls of microRNAs. The present study is the first to investigate miRNA biogenesis and regulation in the brain of a freeze tolerant vertebrate. Indeed, proper brain function and adaptations to environmental stimuli play a crucial role in coordinating stress responses. Immunoblotting of miRNA biogenesis factors illustrated an overall reduction in the majority of these processing proteins suggesting a potential suppression of miRNA maturation over the freeze-thaw cycle. This was coupled with a large-scale RT-qPCR analysis of relative expression levels of 113 microRNA species in the brains of control, 24 h frozen, and 8 h thawed R. sylvatica. Of the 41 microRNAs differentially regulated during freezing and thawing, only two were significantly upregulated. Bioinformatic target enrichment of the downregulated miRNAs, performed at the low temperatures experienced during freezing and thawing, predicted their involvement in the potential activation of various neuroprotective processes such as synaptic signaling, intracellular signal transduction, and anoxia/ischemia injury protection. The predominantly downregulated microRNA fingerprint identified herein suggests a microRNA-mediated cryoprotective mechanism responsible for maintaining neuronal functions and facilitating successful whole brain freezing and thawing.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
6
|
Regulation of glutamate dehydrogenase (GDH) in response to whole body freezing in wood frog liver linked to differential acetylation and ADP-ribosylation. Arch Biochem Biophys 2017; 636:90-99. [DOI: 10.1016/j.abb.2017.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 12/31/2022]
|
7
|
Montero-Mendieta S, Grabherr M, Lantz H, De la Riva I, Leonard JA, Webster MT, Vilà C. A practical guide to build de-novo assemblies for single tissues of non-model organisms: the example of a Neotropical frog. PeerJ 2017; 5:e3702. [PMID: 28879061 PMCID: PMC5582611 DOI: 10.7717/peerj.3702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/27/2017] [Indexed: 01/01/2023] Open
Abstract
Whole genome sequencing (WGS) is a very valuable resource to understand the evolutionary history of poorly known species. However, in organisms with large genomes, as most amphibians, WGS is still excessively challenging and transcriptome sequencing (RNA-seq) represents a cost-effective tool to explore genome-wide variability. Non-model organisms do not usually have a reference genome and the transcriptome must be assembled de-novo. We used RNA-seq to obtain the transcriptomic profile for Oreobates cruralis, a poorly known South American direct-developing frog. In total, 550,871 transcripts were assembled, corresponding to 422,999 putative genes. Of those, we identified 23,500, 37,349, 38,120 and 45,885 genes present in the Pfam, EggNOG, KEGG and GO databases, respectively. Interestingly, our results suggested that genes related to immune system and defense mechanisms are abundant in the transcriptome of O. cruralis. We also present a pipeline to assist with pre-processing, assembling, evaluating and functionally annotating a de-novo transcriptome from RNA-seq data of non-model organisms. Our pipeline guides the inexperienced user in an intuitive way through all the necessary steps to build de-novo transcriptome assemblies using readily available software and is freely available at: https://github.com/biomendi/TRANSCRIPTOME-ASSEMBLY-PIPELINE/wiki.
Collapse
Affiliation(s)
- Santiago Montero-Mendieta
- Conservation and Evolutionary Genetics Group, Department of Integrative Ecology, Doñana Biological Station (EBD-CSIC), Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Manfred Grabherr
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden (BILS), Uppsala Universitet, Uppsala, Sweden
| | - Henrik Lantz
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden (BILS), Uppsala Universitet, Uppsala, Sweden
| | - Ignacio De la Riva
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Department of Integrative Ecology, Doñana Biological Station (EBD-CSIC), Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala Universitet, Uppsala, Sweden
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Department of Integrative Ecology, Doñana Biological Station (EBD-CSIC), Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
8
|
Luu BE, Storey KB. Dehydration triggers differential microRNA expression in Xenopus laevis brain. Gene 2015; 573:64-9. [DOI: 10.1016/j.gene.2015.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/17/2022]
|