1
|
Martins C, Magalhães S, Almeida I, Neto V, Rebelo S, Nunes A. Metabolomics to Study Human Aging: A Review. Curr Mol Med 2024; 24:457-477. [PMID: 37026499 DOI: 10.2174/1566524023666230407123727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 04/08/2023]
Abstract
In the last years, with the increase in the average life expectancy, the world's population is progressively aging, which entails social, health and economic problems. In this sense, the need to better understand the physiology of the aging process becomes an urgent need. Since the study of aging in humans is challenging, cellular and animal models are widely used as alternatives. Omics, namely metabolomics, have emerged in the study of aging, with the aim of biomarker discovering, which may help to uncomplicate this complex process. This paper aims to summarize different models used for aging studies with their advantages and limitations. Also, this review gathers the published articles referring to biomarkers of aging already discovered using metabolomics approaches, comparing the results obtained in the different studies. Finally, the most frequently used senescence biomarkers are described, along with their importance in understanding aging.
Collapse
Affiliation(s)
- Claudia Martins
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| | - Sandra Magalhães
- Department of Surgery and Physiology, Faculty of Medicine, UnIC@RISE, Cardiovascular Research & Development Centre, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Idália Almeida
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
- CICECO: Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Vanessa Neto
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| | - Alexandra Nunes
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| |
Collapse
|
2
|
Laurenzana I, De Luca L, Zoppoli P, Calice G, Sgambato A, Carella AM, Caivano A, Trino S. DNA methylation of hematopoietic stem/progenitor cells from donor peripheral blood to patient bone marrow: implications for allogeneic hematopoietic stem cell transplantation. Clin Exp Med 2023; 23:4493-4510. [PMID: 37029309 PMCID: PMC10725404 DOI: 10.1007/s10238-023-01053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (AHSCT) is a life-saving treatment for selected hematological malignancies. So far, it remains unclear whether transplanted hematopoietic stem/progenitor cells (HSPCs) undergo epigenetic changes upon engraftment in recipient bone marrow (BM) after AHSCT and whether these changes might be useful in the transplant diagnostics. The purpose of this study was to characterize the whole genome methylation profile of HSPCs following AHSCT. Moreover, the relationship between the observed methylation signature and patient outcome was analyzed. Mobilized peripheral blood (mPB)-HSPCs from seven donors and BM-HSPCs longitudinally collected from transplanted patients with hematological malignancies up to one year from AHSCT (a total of twenty-eight samples) were analyzed using DNA methylation based-arrays. The obtained data showed that DNA methylation of mPB-HSPCs differs between young and adult donors and changes following HSPC engraftment in the BM of recipient patients. Looking at methylation in promoter regions, at 30 days post-AHSCT, BM-HSPCs showed a higher number of differentially methylated genes (DMGs) compared to those of mPB-HSPCs, with a prevalent hyper-methylation. These changes were maintained during all the analyzed time points, and methylation became like the donors after one year from transplant. Functional analysis of these DMGs showed an enrichment in cell adhesion, differentiation and cytokine (interleukin-2, -5 and -7) production and signaling pathways. Of note, DNA methylation analysis allowed to identify a potential "cancer/graft methylation signature" of transplant failure. It was evident in the latest available post-transplant BM-HSPC sample (at 160 days) and surprisingly already in early phase (at 30 days) in patients whose transplant was doomed to fail. Overall, the analysis of HSPC methylation profile could offer useful prognostic information to potentially assess engraftment success and predict graft failure in AHSCT.
Collapse
Affiliation(s)
- Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS CROB), Rionero in Vulture, Italy
| | - Luciana De Luca
- Unit of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS CROB), Rionero in Vulture, Italy
| | - Pietro Zoppoli
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS CROB), Rionero in Vulture, Italy.
- Department of Molecular Medicine and Health Biotechnology, Università di Napoli Federico II, 80131, Naples, Italy.
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS CROB), Rionero in Vulture, Italy
| | - Alessandro Sgambato
- Scientific Direction, Centro di Riferimento Oncologico della Basilicata (IRCCS CROB), Rionero in Vulture, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angelo Michele Carella
- Department of Hematology and Stem Cell Transplant Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonella Caivano
- Unit of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS CROB), Rionero in Vulture, Italy.
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS CROB), Rionero in Vulture, Italy
| |
Collapse
|
3
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
4
|
Bateson M, Nolan R. A Refined Method for Studying Foraging Behaviour and Body Mass in Group-Housed European Starlings. Animals (Basel) 2022; 12:ani12091159. [PMID: 35565585 PMCID: PMC9099603 DOI: 10.3390/ani12091159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Small birds such as European starlings respond rapidly to environmental challenges by losing or gaining weight. Laboratory studies of these birds are therefore useful for understanding how the environment affects body weight. However, practical constraints including the need to catch birds frequently for weighing has meant that birds are often housed alone in small cages for such studies. Such conditions are unnatural and are likely to cause stress. Consequently, the data obtained from these studies are unrepresentative of wild birds. Here, we describe a novel technology based on smart feeders that permits continuous recording of foraging behaviour and body masses from starlings housed in groups in large indoor aviaries that permit more natural behaviour. We show that the birds quickly learn to use the feeders and that the system delivers detailed real-time data on foraging behaviour and body mass, without the need for frequent catching. The data obtained allowed us to study how the foraging decisions that a bird makes within a single day affect its body weight that day. These improvements in the quality of the data that we are able to collect will help inform our understanding of the environmental causes of weight gain and obesity. Abstract Laboratory experiments on passerine birds have been important for testing hypotheses regarding the effects of environmental variables on the adaptive regulation of body mass. However, previous work in this area has suffered from poor ecological validity and animal welfare due to the requirement to house birds individually in small cages to facilitate behavioural measurement and frequent catching for weighing. Here, we describe the social foraging system, a novel technology that permits continuous collection of individual-level data on operant foraging behaviour and body mass from group-housed European starlings (Sturnus vulgaris). We report on the rapid acquisition of operant key pecking, followed by foraging and body mass data from two groups of six birds maintained on a fixed-ratio operant schedule under closed economy for 11 consecutive days. Birds gained 6.0 ± 1.2 g (mean ± sd) between dawn and dusk each day and lost an equal amount overnight. Individual daily mass gain trajectories were non-linear, with the rate of gain decelerating between dawn and dusk. Within-bird variation in daily foraging effort (key pecks) positively predicted within-bird variation in dusk mass. However, between-bird variation in mean foraging effort was uncorrelated with between-bird variation in mean mass, potentially indicative of individual differences in daily energy requirements. We conclude that the social foraging system delivers refined data collection and offers potential for improving our understanding of mass regulation in starlings and other species.
Collapse
|
5
|
Marasco V, Smith S, Angelier F. How does early-life adversity shape telomere dynamics during adulthood? Problems and paradigms. Bioessays 2022; 44:e2100184. [PMID: 35122449 DOI: 10.1002/bies.202100184] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
Although early-life adversity has been associated with negative consequences during adulthood, growing evidence shows that such adversity can also lead to subsequent stress resilience and positive fitness outcomes. Telomere dynamics are relevant in this context because of the link with developmental conditions and longevity. However, few studies have assessed whether the effects of early-life adversity on developmental telomere dynamics may relate to adult telomere dynamics. We propose that the potential links between early-life adversity and adult telomere dynamics could be driven by developmental constraints (the Constraint hypothesis), by the nature/severity of developmental adversity (the Resilience hypothesis), or by developmental-mediated changes in individual life-history strategies (the Pace of Life hypothesis). We discuss these non-mutually exclusive hypotheses, explore future research directions, and propose specific studies to test these hypotheses. Our article aims to expand our understanding of the evolutionary role of developmental conditions on adult telomere dynamics, stress resilience and ageing.
Collapse
Affiliation(s)
- Valeria Marasco
- Konrad Lorenz Institute of Ethology (KLIVV), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Steve Smith
- Konrad Lorenz Institute of Ethology (KLIVV), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS)-La Rochelle Université (LRU), UMR 7372, Villiers en Bois, France
| |
Collapse
|
6
|
Wu L, Xie X, Liang T, Ma J, Yang L, Yang J, Li L, Xi Y, Li H, Zhang J, Chen X, Ding Y, Wu Q. Integrated Multi-Omics for Novel Aging Biomarkers and Antiaging Targets. Biomolecules 2021; 12:39. [PMID: 35053186 PMCID: PMC8773837 DOI: 10.3390/biom12010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is closely related to the occurrence of human diseases; however, its exact biological mechanism is unclear. Advancements in high-throughput technology provide new opportunities for omics research to understand the pathological process of various complex human diseases. However, single-omics technologies only provide limited insights into the biological mechanisms of diseases. DNA, RNA, protein, metabolites, and microorganisms usually play complementary roles and perform certain biological functions together. In this review, we summarize multi-omics methods based on the most relevant biomarkers in single-omics to better understand molecular functions and disease causes. The integration of multi-omics technologies can systematically reveal the interactions among aging molecules from a multidimensional perspective. Our review provides new insights regarding the discovery of aging biomarkers, mechanism of aging, and identification of novel antiaging targets. Overall, data from genomics, transcriptomics, proteomics, metabolomics, integromics, microbiomics, and systems biology contribute to the identification of new candidate biomarkers for aging and novel targets for antiaging interventions.
Collapse
Affiliation(s)
- Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Jun Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Juan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Haixin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| |
Collapse
|
7
|
Hecht L. The importance of considering age when quantifying wild animals' welfare. Biol Rev Camb Philos Soc 2021; 96:2602-2616. [PMID: 34155749 DOI: 10.1111/brv.12769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/18/2023]
Abstract
Wild animals experience different challenges and opportunities as they mature, and this variety of experiences can lead to different levels of welfare characterizing the day-to-day lives of individuals of different ages. At the same time, most wild animals who are born do not survive to adulthood. Individuals who die as juveniles do not simply experience a homogeneous fraction of the lifetimes of older members of their species; rather, their truncated lives may be characterized by very different levels of welfare. Here, I propose the concept of welfare expectancy as a framework for quantifying wild animal welfare at a population level, given individual-level data on average welfare with respect to age. This concept fits conveniently alongside methods of analysis already used in population ecology, such as demographic sensitivity analysis, and is applicable to evaluating the welfare consequences of human interventions and natural pressures that disproportionately affect individuals of different ages. In order to understand better and improve the state of wild animal welfare, more attention should be directed towards young animals and the particular challenges they face.
Collapse
Affiliation(s)
- Luke Hecht
- Wild Animal Initiative, 115 Elm Street, Suite I, PMB 2321, Farmington, MN, 55024, U.S.A.,Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, U.K
| |
Collapse
|
8
|
Rivero-Segura NA, Bello-Chavolla OY, Barrera-Vázquez OS, Gutierrez-Robledo LM, Gomez-Verjan JC. Promising biomarkers of human aging: In search of a multi-omics panel to understand the aging process from a multidimensional perspective. Ageing Res Rev 2020; 64:101164. [PMID: 32977058 DOI: 10.1016/j.arr.2020.101164] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
The aging process has been linked to the occurrence of chronic diseases and functional impairments, including cancer, sarcopenia, frailty, metabolic, cardiovascular, and neurodegenerative diseases. Nonetheless, aging is highly variable and heterogeneous and represents a challenge for its characterization. In this sense, intrinsic capacity (IC) stands as a novel perspective by the World Health Organization, which integrates the individual wellbeing, environment, and risk factors to understand aging. However, there is a lack of quantitative and qualitative attributes to define it objectively. Therefore, in this review we attempt to summarize the most relevant and promising biomarkers described in clinical studies at date over different molecular levels, including epigenomics, transcriptomics, proteomics, metabolomics, and the microbiome. To aid gerontologists, geriatricians, and biomedical researchers to understand the aging process through the IC. Aging biomarkers reflect the physiological state of individuals and the underlying mechanisms related to homeostatic changes throughout an individual lifespan; they demonstrated that aging could be measured independently of time (that may explain its heterogeneity) and to be helpful to predict age-related syndromes and mortality. In summary, we highlight the areas of opportunity and gaps of knowledge that must be addressed to fully integrate biomedical findings into clinically useful tools and interventions.
Collapse
Affiliation(s)
| | - O Y Bello-Chavolla
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico; Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - O S Barrera-Vázquez
- Departamento de Famacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - J C Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico.
| |
Collapse
|
9
|
Scheun J, Tordiffe ASW, Wimberger K, Ganswindt A. Validating a non-invasive technique for monitoring physiological stress in the samango monkey. Onderstepoort J Vet Res 2020; 87:e1-e8. [PMID: 32129637 PMCID: PMC7059245 DOI: 10.4102/ojvr.v87i1.1720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
The non-invasive monitoring of physiological stress can provide conservation and wildlife managers with an invaluable tool for assessing animal welfare and psychological health of captive and free-ranging populations. A significant decrease in free-ranging primate populations globally and an increase in captive-housed primates have led to a need to monitor the stress and general welfare of these animals. We examined the suitability of three enzyme immunoassays (EIAs) for monitoring stress-related physiological responses in the samango monkey, Cercopithecus albogularis erythrarchus. We conducted an adrenocorticotropic hormone (ACTH) challenge on a male and female at the National Zoological Garden, Pretoria, South Africa. Individual faecal samples were collected 8 days pre- and post-ACTH administration and subsequently analysed for faecal glucocorticoid metabolite (fGCM) concentrations. During the study, biological stressors occurred for both the male and female. Two of the three EIAs tested (11-oxoetiocholanolone I and II) were able to reliably monitor fGCM alterations throughout the study period in both sexes. The 11-oxoetiocholanolone I EIA, however, had the lowest mean deviation from the calculated baseline value and was thus chosen as the preferred assay. Both the physiological activation of the stress response and the biological response to a stressor could be monitored with the chosen assay. The successful establishment of a reliable, non-invasive method for monitoring adrenocortical activity in C. albogularis erythrarchus will now allow conservationists, scientific researchers and wildlife managers to evaluate the level of stress experienced, and general welfare, by animals in captivity as well as free-ranging populations.
Collapse
Affiliation(s)
- Juan Scheun
- National Zoological Garden, South African National Biodiversity Institute, Pretoria, South Africa; and, Department of Zoology and Entomology, Endocrine Research Laboratory, Mammal Research Institute, Faculty of Natural and Agricultural Science, University of Pretoria, Pretoria.
| | | | | | | |
Collapse
|
10
|
Alzheimer's disease progression and risk factors: A standardized comparison between six large data sets. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:515-523. [PMID: 31650008 PMCID: PMC6804515 DOI: 10.1016/j.trci.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There exist a large number of cohort studies that have been used to identify genetic and biological risk factors for developing Alzheimer's disease (AD). However, there is a disagreement between studies as to how strongly these risk factors affect the rate of progression through diagnostic groups toward AD. We have calculated the probability of transitioning through diagnostic groups in six studies and considered how uncertainty around the strength of the effect of these risk factors affects estimates of the distribution of individuals in each diagnostic group in an AD clinical trial simulator. In this work, we identify the optimal choice of widely collected variables for comparing data sets and calculating probabilities of progression toward AD. We use the estimated transition probabilities to inform stochastic simulations of AD progression that are based on a Markov model and compare predicted incidence rates to those in a community-based study, the Cardiovascular Health Study.
Collapse
|
11
|
Developmental history, energetic state and choice impulsivity in European starlings, Sturnus vulgaris. Anim Cogn 2019; 22:413-421. [PMID: 30840167 PMCID: PMC6459807 DOI: 10.1007/s10071-019-01254-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Impulsivity—the extent to which a reward is devalued by the amount of time until it is realized—can be affected by an individual’s current energetic state and long-term developmental history. In European starlings (Sturnus vulgaris), a previous study found that birds that were lighter for their skeletal size, and birds that had undergone greater shortening of erythrocyte telomeres over the course of development, were more impulsive as adults. Here, we studied the impulsivity of a separate cohort of 29 starlings hand-reared under different combinations of food amount and begging effort. The task involved repeated choice between a key yielding one pellet after 3 s and another key yielding two pellets after 8 s. Impulsivity was operationalised as the proportion of choices for the short-delay option. We found striking variation in impulsivity. We did not replicate the results of the previous study concerning developmental telomere attrition, though combining all the evidence to date in a meta-analysis did support that robustness of that association. We also found that early-life conditions and mass for skeletal size interacted in predicting impulsivity. Specifically, birds that had experienced the combination of high begging effort and low food amount were less impulsive than other groups, and the usual negative relationship between impulsivity and body mass was abolished in birds that had experienced high begging effort. We discuss methodological differences between our study and studies that measure impulsivity using an adjusting-delay procedure.
Collapse
|
12
|
Gott A, Andrews C, Bedford T, Nettle D, Bateson M. Developmental history and stress responsiveness are related to response inhibition, but not judgement bias, in a cohort of European starlings (Sturnus vulgaris). Anim Cogn 2018; 22:99-111. [PMID: 30467655 PMCID: PMC6327078 DOI: 10.1007/s10071-018-1226-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/30/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022]
Abstract
Judgement bias tasks are designed to provide markers of affective states. A recent study of European starlings (Sturnus vulgaris) demonstrated modest familial effects on judgement bias performance, and found that adverse early experience and developmental telomere attrition (an integrative marker of biological age) both affected judgement bias. Other research has shown that corticosterone levels affect judgement bias. Here, we investigated judgement bias using a modified Go/No Go task in a new cohort of starlings (n = 31) hand-reared under different early-life conditions. We also measured baseline corticosterone and the corticosterone response to acute stress in the same individuals. We found evidence for familial effects on judgement bias, of a similar magnitude to the previous study. We found no evidence that developmental treatments or developmental telomere attrition were related to judgement bias per se. We did, however, find that birds that experienced the most benign developmental conditions, and birds with the greatest developmental telomere attrition, were significantly faster to probe the learned unrewarded stimulus. We also found that the birds whose corticosterone levels were faster to return towards baseline after an acute stressor were slower to probe the learned unrewarded stimulus. Our results illustrate the potential complexities of relationships between early-life experience, stress and affectively mediated decision making. For judgement bias tasks, they demonstrate the importance of clearly distinguishing factors that affect patterns of responding to the learned stimuli (i.e. response inhibition in the case of the Go/No Go design) from factors that influence judgements under ambiguity.
Collapse
Affiliation(s)
- Annie Gott
- Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Clare Andrews
- Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Tom Bedford
- Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Daniel Nettle
- Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University, Newcastle, UK.
| | - Melissa Bateson
- Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University, Newcastle, UK
| |
Collapse
|