1
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Lin S, Chang Y, Lee W, Chiang C, Liu S, Lee H, Jeng L, Shyu W. Role of STAT3-FOXO3 Signaling in the Modulation of Neuroplasticity by PD-L1-HGF-Decorated Mesenchymal Stem Cell-Derived Exosomes in a Murine Stroke Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404882. [PMID: 39049677 PMCID: PMC11423231 DOI: 10.1002/advs.202404882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Indexed: 07/27/2024]
Abstract
The limited therapeutic strategies available for stroke leave many patients disabled for life. This study assessed the potential of programmed death-ligand 1 (PD-L1) and hepatocyte growth factor (HGF)-engineered mesenchymal stem cell-derived exosomes (EXO-PD-L1-HGF) in enhancing neurological recovery post-stroke. EXO-PD-L1-HGF, which efficiently endocytosed into target cells, significantly diminishes the H2O2-induced neurotoxicity and increased the antiapoptotic proteins in vitro. EXO-PD-L1-HGF attenuates inflammation by inhibiting T-cell proliferation and increasing the number of CD8+CD122+IL-10+ regulatory T cells. Intravenous injection of EXO-PD-L1-HGF could target stromal cell-derived factor-1α (SDF-1α+) cells over the peri-infarcted area of the ischemic brain through CXCR4 upregulation and accumulation in neuroglial cells post-stroke. EXO-PD-L1-HGF facilitates endogenous nestin+ neural progenitor cell (NPC)-induced neurogenesis via STAT3-FOXO3 signaling cascade, which plays a pivotal role in cell survival and neuroprotection, thereby mitigating infarct size and enhancing neurological recovery in a murine stroke model. Moreover, increasing populations of the immune-regulatory CD19+IL-10+ and CD8+CD122+IL-10+ cells, together with reducing populations of proinflammatory cells, created an anti-inflammatory microenvironment in the ischemic brain. Thus, innovative approaches employing EXO-PD-L1-HGF intervention, which targets SDF-1α+ expression, modulates the immune system, and enhances the activation of resident nestin+ NPCs, might significantly alter the brain microenvironment and create a niche conducive to inducing neuroplastic regeneration post-stroke.
Collapse
Affiliation(s)
- Syuan‐Ling Lin
- Translational Medicine Research Center and Department of NeurologyChina Medical University HospitalTaichung404Taiwan
| | - Yi‐Wen Chang
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
- Department of Medical ResearchNational Taiwan University HospitalTaipei100Taiwan
| | - Wei Lee
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
| | - Chih‐Sheng Chiang
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
- Graduate Institute of Biomedical Sciences and New Drug Development CenterChina Medical UniversityTaichung404Taiwan
| | - Shih‐Ping Liu
- Translational Medicine Research Center and Department of NeurologyChina Medical University HospitalTaichung404Taiwan
- Graduate Institute of Biomedical Sciences and New Drug Development CenterChina Medical UniversityTaichung404Taiwan
| | - Hsu‐Tung Lee
- Graduate Institute of Medical SciencesNational Defense Medical CenterTaipei114Taiwan
- Department of Post‐Baccalaureate Medicine, College of MedicineNational Chung Hsing UniversityTaichung402Taiwan
- Division of neurosurgical Oncology Neurological InstituteTaichung Veterans General HospitalTaichung407Taiwan
| | - Long‐Bin Jeng
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
- Organ Transplantation CenterChina Medical University HospitalTaichung404Taiwan
| | - Woei‐Cherng Shyu
- Translational Medicine Research Center and Department of NeurologyChina Medical University HospitalTaichung404Taiwan
- Graduate Institute of Biomedical Sciences and New Drug Development CenterChina Medical UniversityTaichung404Taiwan
- Department of Occupational TherapyAsia UniversityTaichung413Taiwan
| |
Collapse
|
3
|
Wang Z, Xia L, Cheng J, Liu J, Zhu Q, Cui C, Li J, Huang Y, Shen J, Xia Y. Combination Therapy of Bone Marrow Mesenchymal Stem Cell Transplantation and Electroacupuncture for the Repair of Intrauterine Adhesions in Rats: Mechanisms and Functional Recovery. Reprod Sci 2024; 31:2318-2330. [PMID: 38499950 DOI: 10.1007/s43032-024-01465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/12/2024] [Indexed: 03/20/2024]
Abstract
Transplantation of bone marrow mesenchymal stem cells (BMSCs) has demonstrated promising clinical utility in the treatment of endometrial injury and the restoration of fertility. However, since the efficacy of BMSCs after transplantation is not stable, it is very important to find effective ways to enhance the utilisation of BMSCs. Electroacupuncture (EA) has some positive effects on the chemotaxis of stem cells and diseases related to uterine injury. In this study, we established the intrauterine adhesion (IUA) model of the Sprague-Dawley rat using lipopolysaccharide infection and mechanical scratching. Phosphate-buffered saline, BMSCs alone, and BMSCs combined with EA were randomly administered to the rats. Fluorescent cell labelling showed the migration of transplanted BMSCs. H&E staining, Masson staining, Western blot, immunohistochemistry, ELISA, and qRT-PCR were utilised to detect changes in endometrial morphology and expressions of endometrial receptivity-related factors, endometrial pro-inflammatory factors, and fibrosis factors. Finally, we conducted a fertility test to measure the recovery of uterine function. The results showed that EA promoted transplanted BMSCs to migrate into the injured uterus by activating the SDF-1/CXCR4 axis. Endometrial morphology showed the most significant improvement in the BMSC + EA group. The expressions of endometrial pro-inflammatory factors and fibrosis indexes in the BMSC + EA group were lower than those in the model and BMSC groups. Further studies revealed that the expression of endometrial receptivity-related factors and the number of embryos implanted on day 8 of gestation increased in the BMSC + EA group compared with the model group and the BMSC group.
Collapse
Affiliation(s)
- Zhaoxian Wang
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liangjun Xia
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Cheng
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingyu Liu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qian Zhu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chuting Cui
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junwei Li
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yueying Huang
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Shen
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Youbing Xia
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Golebiowska AA, Jala VR, Nukavarapu SP. Decellularized Tissue-Induced Cellular Recruitment for Tissue Engineering and Regenerative Medicine. Ann Biomed Eng 2024; 52:1835-1847. [PMID: 36952144 DOI: 10.1007/s10439-023-03182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Biomaterials that recapitulate the native in vivo microenvironment are promising to facilitate tissue repair and regeneration when used in combination with relevant growth factors (GFs), chemokines, cytokines, and other small molecules and cell sources. However, limitations with the use of exogenous factors and ex vivo cell expansion has prompted cell-/GF-free tissue engineering strategies. Additionally, conventional chemotaxis assays for studying cell migration behavior provide limited information, lack long-term stability, and fail to recapitulate physiologically relevant conditions. In this study, articular cartilage tissue-based biomaterials were developed via a rapid tissue decellularization protocol. The decellularized tissue was further processed into a hydrogel through solubilization and self-assembly. Chemotactic activity of the tissue-derived gel was investigated using sophisticated cellular migration assays. These tissue-derived extracellular matrix (ECM) biomaterials retain biochemical cues of native tissue and stimulate the chemotactic migration of hBMSCs in 2D and 3D cell migration models using a real-time chemotaxis assay. This strategy, in a way, developed a new paradigm in tissue engineering where cartilage tissue repair and regeneration can be approached with decellularized cartilage tissue in the place of an engineered matrix. This strategy can be further expanded for other tissue-based ECMs to develop cell-/GF-free tissue engineering and regenerative medicine strategies for recruiting endogenous cell populations to facilitate tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Venkatakrishna R Jala
- Department of Microbiology and Immunology, James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA
| | - Syam P Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA.
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
5
|
Lin SL, Lee W, Liu SP, Chang YW, Jeng LB, Shyu WC. Novel Programmed Death Ligand 1-AKT-engineered Mesenchymal Stem Cells Promote Neuroplasticity to Target Stroke Therapy. Mol Neurobiol 2024; 61:3819-3835. [PMID: 38030932 DOI: 10.1007/s12035-023-03779-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Although tissue plasminogen activator (t-PA) and endovascular thrombectomy are well-established treatments for acute ischemic stroke, over half of patients with stroke remain disabled for a long time. Thus, a significant unmet need exists to develop an effective strategy for treating acute stroke. We developed a combination of programmed cell death-ligand 1 (PD-L1) and AKT-modified umbilical cord mesenchymal stem cells (UMSC-PD-L1-AKT) implanted through intravenous (IV) and intracarotid (IA) routes to enhance therapeutic efficacy in a murine stroke model for overcoming the hypoxic environment of the ischemic brain, to prolong stem cell survival, and to attenuate systemic inflammation to protect neuroglial cells from ischemic injury. Higher cellular proliferation and survival upon exposure to toxic agents were observed in UMSC-PD-L1-AKT cells than in UMSCs in vitro. Moreover, increased attenuation of CFSE+ cell proliferation and increased survival of primary cortical cells were verified by the interaction with UMSC-PD-L1-AKT. Consistently, dual-route administration (IV + IA) of UMSC-PD-L1-AKT resulted in a significant reduction in infarction volume and improvement of neurological dysfunction in a stroke model. Furthermore, enhancing CD8+CD122+IL-10+ T-regulatory (Treg) cells and reducing CD11b+CD80+ microglial/macrophages and CD3+CD8+TNF-α+ and CD3+CD8+ IFN-α+ cytotoxic T cells induced an anti-inflammatory microenvironment to protect neuroglial cells in the ischemic brain. Collectively, therapeutic intervention using UMSC-PD-L1-AKT could provide a niche for inducing neuroplastic regeneration in brains after stroke.
Collapse
Affiliation(s)
- Syuan-Ling Lin
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wei Lee
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Ping Liu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Yi-Wen Chang
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
| | - Long-Bin Jeng
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.
| | - Woei-Cherng Shyu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.
- Neuroscience and Brain Disease Center and New Drug Development Center, China Medical University, Taichung, Taiwan.
- Department of Occupational Therapy, Asia University, Taichung, Taiwan.
| |
Collapse
|
6
|
Huang L, Chen X, Yang X, Zhang Y, Qiu X. GelMA-based hydrogel biomaterial scaffold: A versatile platform for regenerative endodontics. J Biomed Mater Res B Appl Biomater 2024; 112:e35412. [PMID: 38701383 DOI: 10.1002/jbm.b.35412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/26/2024] [Accepted: 04/13/2024] [Indexed: 05/05/2024]
Abstract
Endodontic therapy, while generally successful, is primarily limited to mature teeth, hence the pressing need to explore regenerative approaches. Gelatin methacryloyl (GelMA) hydrogels have emerged as pivotal biomaterials, promising a bright future for dental pulp regeneration. Despite advancements in tissue engineering and biomaterials, achieving true pulp tissue regeneration remains a formidable task. GelMA stands out for its injectability, rapid gelation, and excellent biocompatibility, serving as the cornerstone of scaffold materials. In the pursuit of dental pulp regeneration, GelMA holds significant potential, facilitating the delivery of stem cells, growth factors, and other vital substances crucial for tissue repair. Presently, in the field of dental pulp regeneration, researchers have been diligently utilizing GelMA hydrogels as engineering scaffolds to transport various effective substances to promote pulp regeneration. However, existing research is relatively scattered and lacks comprehensive reviews and summaries. Therefore, the primary objective of this article is to elucidate the application of GelMA hydrogels as regenerative scaffolds in this field, thereby providing clear direction for future researchers. Additionally, this article provides a comprehensive discussion on the synthesis, characterization, and application of GelMA hydrogels in root canal therapy regeneration. Furthermore, it offers new application strategies and profound insights into future challenges, such as optimizing GelMA formulations to mimic the complex microenvironment of pulp tissue and enhancing its integration with host tissues.
Collapse
Affiliation(s)
| | - Xuan Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - XiaoXia Yang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yinchun Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
7
|
Sun J, Zhong H, Kang B, Lum T, Liu D, Liang S, Hao J, Guo R. Roles of PD-L1 in human adipose-derived mesenchymal stem cells under inflammatory microenvironment. J Cell Biochem 2024; 125:e30544. [PMID: 38450777 DOI: 10.1002/jcb.30544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Mesenchymal stem cells (MSCs) display unique homing and immunosuppression features which make them promising candidates for cell therapy in inflammatory disorders. It is known that C-X-C chemokine receptor type 4 (CXCR4, also known as CD184) is a critical receptor implicated in MSCs migration, and the protein programmed death ligand-1 (PD-L1) is involved in MSC's immunosuppression. However, it remains unclear how the molecular mechanisms regulate PD-L1 expression for migration and immunosuppression of MSCs under the inflammatory microenvironment. In this article, we used the human adipose-derived mesenchymal stem cells (hADMSCs) treated with lipopolysaccharide (LPS) as an in vitro inflammatory model to explore the roles of PD-L1 on the migration and immunosuppression of MSC. Our results demonstrate that in hADMSCs, LPS significantly increased PD-L1 expression, which mediated the migration of the LPS-treated hADMSCs via CXCR4. In addition, we found that the increased PD-L1 expression in the LPS-treated hADMSCs inhibited B cell proliferation and immunoglobulin G secretion through nuclear factor-κB. Our study suggests that the PD-L1 plays critical roles in the homing and immunosuppression of MSCs which are a promising cell therapy to treat inflammatory diseases.
Collapse
Affiliation(s)
- Jinqiu Sun
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, China
| | - Hannah Zhong
- College of Letters and Science, University of California, Los Angeles, California, USA
| | - Bo Kang
- Department of Health Policy and Management, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, California, USA
| | - Trenton Lum
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Dongxue Liu
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, China
| | - Shengxian Liang
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, China
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Rui Guo
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, China
| |
Collapse
|
8
|
Gan J, Zhang X, Chen G, Hao X, Zhao Y, Sun L. CXCR4-Expressing Mesenchymal Stem Cells Derived Nanovesicles for Rheumatoid Arthritis Treatment. Adv Healthc Mater 2024; 13:e2303300. [PMID: 38145406 DOI: 10.1002/adhm.202303300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Indexed: 12/26/2023]
Abstract
Cell membrane camouflage technology, which a demonstrated value for the bionic replication of natural cell membrane properties, is an active area of ongoing research readily applicable to nanomedicine. How to realize immune evasion, slow down the clearance from the body, and improve targeting are still worth great efforts for this technology. Herein, novel cell membrane-mimicked nanovesicles from genetically engineered mesenchymal stem cells (MSCs) are presented as a potential anti-inflammatory platform for rheumatoid arthritis (RA) management. Utilizing the synthetic biology approach, the biomimetic nanoparticles are constructed by fusing C-X-C motif chemokine receptor4 (CXCR4)-anchored MSC membranes onto drug-loaded polymeric cores (MCPNs), which make them ideal decoys of stromal cell-derived factor-1 (SDF-1)-targeted arthritis. These resulting nanocomplexes function to escape from the immune system and enhance accumulation in the established inflamed joints via the CXCR4/SDF-1 chemotactic signal axis, thereby achieving an affinity to activated macrophages and synovial fibroblasts. It is further demonstrated that the MCPNs can significantly suppress synovial inflammation and relieve pathological conditions with favorable safety properties in collagen-induced arthritis mice. These findings indicate the clinical value of MCPNs as biomimetic nanodrugs for RA therapy and related diseases.
Collapse
Affiliation(s)
- Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Guangcai Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Xubin Hao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
- Department of Rheumatology and Immunology, The First Affliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| |
Collapse
|
9
|
He J, Wang Z, Ao C, Tu C, Zhang Y, Chang C, Xiao C, Xiang E, Rao W, Li C, Wu D. A highly sensitive and specific Homo1-based real-time qPCR method for quantification of human umbilical cord mesenchymal stem cells in rats. Biotechnol J 2024; 19:e2300484. [PMID: 38403446 DOI: 10.1002/biot.202300484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 02/27/2024]
Abstract
BACKGROUND Owing to the characteristics of easier access in vitro, low immunogenicity, and high plasticity, human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are considered as a promising cell-based drugs for clinical application. No internationally recognized technology exists to evaluate the pharmacokinetics and distribution of cell-based drugs in vivo. METHODS We determined the human-specific gene sequence, Homo1, from differential fragments Homo sapiens mitochondrion and Rattus norvegicus mitochondrion. The expression of Homo1 was utilized to determine the distribution of UC-MSCs in the normal and diabetic nephropathy (DN) rats. RESULTS We observed a significant correlation between the number of UC-MSCs and the expression level of Homo1. Following intravenous transplantation, the blood levels of UC-MSCs peaked at 30 min. A large amount of intravenously injected MSCs were trapped in the lungs, but the number of them decreased rapidly after 24 h. Additionally, the distribution of UC-MSCs in the kidneys of DN rats was significantly higher than that of normal rats. CONCLUSIONS In this study, we establish a highly sensitive and specific Homo1-based real-time quantitative PCR method to quantify the distribution of human UC-MSCs in rats. The method provides guidelines for the safety research of cells in preclinical stages.
Collapse
Affiliation(s)
- Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Zhangfan Wang
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chengshu Tu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaqi Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Cheng Chang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Cuihong Xiao
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - E Xiang
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Wei Rao
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
10
|
Yang GD, Ma DS, Ma CY, Bai Y. Research Progress on Cardiac Tissue Construction of Mesenchymal Stem Cells for Myocardial Infarction. Curr Stem Cell Res Ther 2024; 19:942-958. [PMID: 37612870 DOI: 10.2174/1574888x18666230823091017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Heart failure is still the main complication affecting the prognosis of acute myocardial infarction (AMI), and mesenchymal stem cells (MSCs) are an effective treatment to replace necrotic myocardium and improve cardiac functioning. However, the transplant survival rate of MSCs still presents challenges. In this review, the biological characteristics of MSCs, the progress of mechanism research in the treatment of myocardial infarction, and the advances in improving the transplant survival rate of MSCs in the replacement of necrotic myocardial infarction are systematically described. From a basic to advanced clinical research, MSC transplants have evolved from a pure injection, an exosome injection, the genetic modification of MSCs prior to injection to the cardiac tissue engineering of MSC patch grafting. This study shows that MSCs have wide clinical applications in the treatment of AMI, suggesting improved myocardial tissue creation. A broader clinical application prospect will be explored and developed to improve the survival rate of MSC transplants and myocardial vascularization.
Collapse
Affiliation(s)
- Guo-Dong Yang
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Da-Shi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Ye Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yang Bai
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
11
|
Tajali R, Eidi A, Tafti HA, Pazouki A, Kamarul T, Sharifi AM. Transplantation of adipose derived stem cells in diabetes mellitus; limitations and achievements. J Diabetes Metab Disord 2023; 22:1039-1052. [PMID: 37975135 PMCID: PMC10638327 DOI: 10.1007/s40200-023-01280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/10/2023] [Indexed: 11/19/2023]
Abstract
Objectives Diabetes mellitus (DM) is a complex metabolic disease that results from impaired insulin secreting pancreatic β-cells or insulin resistance. Although available medications help control the disease, patients suffer from its complications. Therefore, finding effective therapeutic approaches to treat DM is a priority. Adipose Derived Stem Cells (ADSCs) based therapy is a promising strategy in various regenerative medicine applications, but its systematic translational use is still somewhat out of reach. This review is aimed at clarifying achievements as well as challenges facing the application of ADSCs for the treatment of DM, with a special focus on the mechanisms involved. Methods Literature searches were carried out on "Scopus", "PubMed" and "Google Scholar" up to September 2022 to find relevant articles in the English language for the scope of this review. Results Recent evidence showed a significant role of ADSC therapies in DM by ameliorating insulin resistance and hyperglycemia, regulating hepatic glucose metabolism, promoting β cell function and regeneration, and functioning as a gene delivery tool. In addition, ADSCs could improve diabetic wound healing by promoting collagen deposition, inhibiting inflammation, and enhancing angiogenesis. Conclusion Overall, this literature review revealed the great clinical implications of ADSCs for translating into the clinical setting for the treatment of diabetes. However, further large-scale and controlled studies are needed to overcome challenges and confirm the safety and optimal therapeutic scheme before daily clinical application. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01280-8.
Collapse
Affiliation(s)
- Raziye Tajali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hosein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Pazouki
- Minimally Invasive Surgery research center, IRAN University of Medical Sciences Tehran, Tehran, Iran
| | - Tunku Kamarul
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Mohammad Sharifi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem cell and regenerative Medicine research center, Iran University of medical Sciences, Tehran, Iran
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Zheng X, Zhao D, Liu Y, Jin Y, Liu T, Li H, Liu D. Regeneration and anti-inflammatory effects of stem cells and their extracellular vesicles in gynecological diseases. Biomed Pharmacother 2023; 168:115739. [PMID: 37862976 DOI: 10.1016/j.biopha.2023.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
There are many gynecological diseases, among which breast cancer (BC), cervical cancer (CC), endometriosis (EMs), and polycystic ovary syndrome (PCOS) are common and difficult to cure. Stem cells (SCs) are a focus of regenerative medicine. They are commonly used to treat organ damage and difficult diseases because of their potential for self-renewal and multidirectional differentiation. SCs are also commonly used for difficult-to-treat gynecological diseases because of their strong directional differentiation ability with unlimited possibilities, their tendency to adhere to the diseased tissue site, and their use as carriers for drug delivery. SCs can produce exosomes in a paracrine manner. Exosomes can be produced in large quantities and have the advantage of easy storage. Their safety and efficacy are superior to those of SCs, which have considerable potential in gynecological treatment, such as inhibiting endometrial senescence, promoting vascular reconstruction, and improving anti-inflammatory and immune functions. In this paper, we review the mechanisms of the regenerative and anti-inflammatory capacity of SCs and exosomes in incurable gynecological diseases and the current progress in their application in genetic engineering to provide a foundation for further research.
Collapse
Affiliation(s)
- Xu Zheng
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dan Zhao
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Yang Liu
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Ye Jin
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tianjia Liu
- Changchun University of Chinese Medicine, Changchun 130117, China; Baicheng Medical College, Baicheng 137000, China.
| | - Huijing Li
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Da Liu
- Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
13
|
Yu S, Yu S, Liu H, Liao N, Liu X. Enhancing mesenchymal stem cell survival and homing capability to improve cell engraftment efficacy for liver diseases. Stem Cell Res Ther 2023; 14:235. [PMID: 37667383 PMCID: PMC10478247 DOI: 10.1186/s13287-023-03476-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
Although mesenchymal stem cell (MSC) transplantation provides an alternative strategy for end-stage liver disease (ESLD), further widespread application of MSC therapy is limited owing to low cell engraftment efficiency. Improving cell engraftment efficiency plays a critical role in enhancing MSC therapy for liver diseases. In this review, we summarize the current status and challenges of MSC transplantation for ESLD. We also outline the complicated cell-homing process and highlight how low cell engraftment efficiency is closely related to huge differences in extracellular conditions involved in MSC homing journeys ranging from constant, controlled conditions in vitro to variable and challenging conditions in vivo. Improving cell survival and homing capabilities enhances MSC engraftment efficacy. Therefore, we summarize the current strategies, including hypoxic priming, drug pretreatment, gene modification, and cytokine pretreatment, as well as splenectomy and local irradiation, used to improve MSC survival and homing capability, and enhance cell engraftment and therapeutic efficiency of MSC therapy. We hope that this review will provide new insights into enhancing the efficiency of MSC engraftment in liver diseases.
Collapse
Affiliation(s)
- Shaoxiong Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Saihua Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Haiyan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| |
Collapse
|
14
|
Wu N, Song J, Liu X, Ma X, Guo X, Liu T, Wu M. Effect of an low-energy Nd: YAG laser on periodontal ligament stem cell homing through the SDF-1/CXCR4 signaling pathway. BMC Oral Health 2023; 23:501. [PMID: 37468947 DOI: 10.1186/s12903-023-03132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The key to the success of endogenous regeneration is to improve the homing rate of stem cells, and low-energy laser is an effective auxiliary means to promote cell migration and proliferation. The purpose of this study was to observe whether low-energy neodymium (Nd: YAG) laser with appropriate parameters can affect the proliferation and migration of periodontal ligament stem cells (PDLSCs) through SDF-1/CXCR4 pathway. METHODS h PDLSCs were cultured and identified. CCK8 assay was used to detect the proliferation of h PDLSCs after different power (0, 0.25, 0.5, 1, and 1.5 W) Nd: YAG laser (MSP, 10 Hz, 30 s, 300 μ m) irradiation at 2th, 3rd,5th, and 7th days, and the optimal laser irradiation parameters were selected for subsequent experiments. Then, the cells were categorized into five groups: control group (C), SDF-1 group (S), AMD3100 group (A), Nd: YAG laser irradiation group (N), and Nd: YAG laser irradiation + AMD3100 group (N + A). the migration of h PDLSCs was observed using Transwell, and the SDF-1 expression was evaluated using ELISA andRT-PCR. The SPSS Statistics 21.0 software was used for statistical analysis. RESULTS The fibroblasts cultured were identified as h PDLSCs. Compared with the C, when the power was 1 W, the proliferation rate of h PDLSCs was accelerated (P < 0.05). When the power was 1.5 W, the proliferation rate decreased (P < 0.05). When the power was 0.25 and 0.5 W, no statistically significant difference in the proliferation rate was observed (P > 0.05). The number of cell perforations values as follows: C (956.5 ± 51.74), A (981.5 ± 21.15), S (1253 ± 87.21), N (1336 ± 48.54), and N + A (1044 ± 22.13), that increased significantly in group N (P < 0.05), but decreased in group N + A (P < 0.05). The level of SDF-1 and the expression level of SDF-1 mRNA in groups N and N + A was higher than that in group C (P < 0.05) but lower than that in group A (P < 0.05). CONCLUSIONS Nd: YAG laser irradiation with appropriate parameters provides a new method for endogenous regeneration of periodontal tissue. SDF-1/CXCR4 signaling pathway may be the mechanism of LLLT promoting periodontal regeneration.
Collapse
Affiliation(s)
- Nan Wu
- Hebei Key Laboratory of Stomatology, Department of Periodontology (II), Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Zhongshan East Road 383, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Stomatology, Department of Laser Medicine, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Jianing Song
- Hebei Key Laboratory of Stomatology, Department of Periodontology (II), Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Zhongshan East Road 383, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Stomatology, Department of Laser Medicine, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Xin Liu
- Hebei Key Laboratory of Stomatology, Department of Periodontology (II), Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Zhongshan East Road 383, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Stomatology, Department of Laser Medicine, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Xiangtao Ma
- Hebei Key Laboratory of Stomatology, Department of Periodontology (II), Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Zhongshan East Road 383, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Stomatology, Department of Laser Medicine, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Xiaoman Guo
- Hebei Key Laboratory of Stomatology, Department of Periodontology (II), Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Zhongshan East Road 383, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Stomatology, Department of Laser Medicine, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Taohong Liu
- Hebei Key Laboratory of Stomatology, Department of Periodontology (II), Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Zhongshan East Road 383, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Stomatology, Department of Laser Medicine, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Mingxuan Wu
- Hebei Key Laboratory of Stomatology, Department of Periodontology (II), Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Zhongshan East Road 383, Shijiazhuang, 050017, Hebei, People's Republic of China.
- Hebei Key Laboratory of Stomatology, Department of Laser Medicine, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China.
| |
Collapse
|
15
|
Soh S, Han S, Ka HI, Mun SH, Kim W, Oh G, Yang Y. Adiponectin affects the migration ability of bone marrow-derived mesenchymal stem cells via the regulation of hypoxia inducible factor 1α. Cell Commun Signal 2023; 21:158. [PMID: 37370133 PMCID: PMC10294307 DOI: 10.1186/s12964-023-01143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Bone marrow (BM) is progressively filled with adipocytes during aging process. Thus, BM adipocytes-derived adiponectin (APN) affects the function of bone marrow-derived mesenchymal stem cells (BMSCs). However, little is known about the effect of APN on migration ability of BMSCs cultured under hypoxic conditions, which is similar to the BM microenvironment. RESULTS We found that the population and migration ability of BMSCs from APN KO mice was higher than that of WT mice due to increased stability of hypoxia inducible factor 1α (HIF1α). Stem cell factor (SCF)-activated STAT3 stimulated the induction of HIF1α which further stimulated SCF production, indicating that the SCF/STAT3/HIF1α positive loop was highly activated in the absence of APN. It implies that APN negatively regulated this positive loop by stimulating HIF1α degradation via the inactivation of GSK3β. Furthermore, APN KO BMSCs were highly migratory toward EL-4 lymphoma, and the interaction between CD44 in BMSCs and hyaluronic acid (HA) from EL-4 enhanced the migration of BMSCs. On the other hand, the migrated BMSCs recruited CD8+ T cells into the EL-4 tumor tissue, resulting in the retardation of tumor growth. Additionally, gradually increased APN in BM on the aging process affects migration and related functions of BMSCs, thus aged APN KO mice showed more significant suppression of EL-4 growth than young APN KO mice due to higher migration and recruitment of CD8+ T cells. CONCLUSION APN deficiency enhances CD44-mediated migration ability of BMSCs in the hypoxic conditions by the SCF/STAT3/HIF1α positive loop and influences the migration ability of BMSCs for a longer time depending on the aging process. Video Abstract.
Collapse
Affiliation(s)
- Sujung Soh
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Sora Han
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hye In Ka
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Se Hwan Mun
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Woojung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Gaeun Oh
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
16
|
Liu Y, Huang W, Wang H, Lu W, Guo J, Yu L, Wang L. Influence of SPIO labelling on the function of BMSCs in chemokine receptors expression and chemotaxis. PeerJ 2023; 11:e15388. [PMID: 37283891 PMCID: PMC10241165 DOI: 10.7717/peerj.15388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/19/2023] [Indexed: 06/08/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are increasingly being used in bone marrow transplantation (BMT) to enable homing of the allogeneic hematopoietic stem cells and suppress acute graft versus host disease (aGVHD). The aim of this study was to optimize the labelling of BMSCs with superparamagnetic iron oxide particles (SPIOs), and evaluate the impact of the SPIOs on the biological characteristics, gene expression profile and chemotaxis function of the BMSCs. The viability and proliferation rates of the SPIO-labeled BMSCs were analyzed by trypan blue staining and CCK-8 assay respectively, and the chemotaxis function was evaluated by the transwell assay. The expression levels of chemokine receptors were measured by RT-PCR and flow cytometry. The SPIOs had no effect on the viability of the BMSCs regardless of the labelling concentration and culture duration. The labelling rate of the cells was higher when cultured for 48 h with the SPIOs. Furthermore, cells labeled with 25 µg/ml SPIOs for 48 h had the highest proliferation rates, along with increased expression of chemokine receptor genes and proteins. However, there was no significant difference between the chemotaxis function of the labeled and unlabeled BMSCs. To summarize, labelling BMSCs with 25 µg/ml SPIOs for 48h did not affect their biological characteristics and chemotaxis function, which can be of significance for in vivo applications.
Collapse
Affiliation(s)
- Yuanchun Liu
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wanyi Huang
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiyang Wang
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wei Lu
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiayu Guo
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Li Yu
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lina Wang
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
17
|
Lopes-Pacheco M, Rocco PRM. Functional enhancement strategies to potentiate the therapeutic properties of mesenchymal stromal cells for respiratory diseases. Front Pharmacol 2023; 14:1067422. [PMID: 37007034 PMCID: PMC10062457 DOI: 10.3389/fphar.2023.1067422] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Respiratory diseases remain a major health concern worldwide because they subject patients to considerable financial and psychosocial burdens and result in a high rate of morbidity and mortality. Although significant progress has been made in understanding the underlying pathologic mechanisms of severe respiratory diseases, most therapies are supportive, aiming to mitigate symptoms and slow down their progressive course but cannot improve lung function or reverse tissue remodeling. Mesenchymal stromal cells (MSCs) are at the forefront of the regenerative medicine field due to their unique biomedical potential in promoting immunomodulation, anti-inflammatory, anti-apoptotic and antimicrobial activities, and tissue repair in various experimental models. However, despite several years of preclinical research on MSCs, therapeutic outcomes have fallen far short in early-stage clinical trials for respiratory diseases. This limited efficacy has been associated with several factors, such as reduced MSC homing, survival, and infusion in the late course of lung disease. Accordingly, genetic engineering and preconditioning methods have emerged as functional enhancement strategies to potentiate the therapeutic actions of MSCs and thus achieve better clinical outcomes. This narrative review describes various strategies that have been investigated in the experimental setting to functionally potentiate the therapeutic properties of MSCs for respiratory diseases. These include changes in culture conditions, exposure of MSCs to inflammatory environments, pharmacological agents or other substances, and genetic manipulation for enhanced and sustained expression of genes of interest. Future directions and challenges in efficiently translating MSC research into clinical practice are discussed.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| |
Collapse
|
18
|
Chen WST, Lin TY, Kuo CH, Hsieh DJY, Kuo WW, Liao SC, Kao HC, Ju DT, Lin YJ, Huang CY. Ginkgolide A improves the pleiotropic function and reinforces the neuroprotective effects by mesenchymal stem cell-derived exosomes in 6-OHDA-induced cell model of Parkinson's disease. Aging (Albany NY) 2023; 15:1358-1370. [PMID: 36863713 PMCID: PMC10042680 DOI: 10.18632/aging.204526] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/11/2023] [Indexed: 03/04/2023]
Abstract
Parkinson's disease (PD) is a common disorder attributed to the loss of midbrain dopamine (mDA) neurons and reduced dopamine secretion. Currently, the treatment regimes for PD comprise deep brain stimulations, however, it attenuates the PD progression marginally and does not improve neuronal cell death. We investigated the function of Ginkgolide A (GA) to reinforce Wharton's Jelly-derived mesenchymal stem cells (WJMSCs) for treating the in vitro model of PD. GA enhanced the self-renewal, proliferation, and cell homing function of WJMSCs as assessed by MTT and transwell co-culture assay with a neuroblastoma cell line. GA pre-treated WJMSCs can restore 6-hydroxydopamine (6-OHDA)-induced cell death in a co-culture assay. Furthermore, exosomes isolated from GA pre-treated WJMSCs significantly rescued 6-OHDA-induced cell death as determined by MTT assay, flow cytometry, and TUNEL assay. Western blotting showed that apoptosis-related proteins were decreased following GA-WJMSCs exosomal treatment which further improved mitochondrial dysfunction. We further demonstrated that exosomes isolated from GA-WJMSCs could restore autophagy using immunofluorescence staining and immunoblotting assay. Finally, we used the alpha-synuclein recombinant protein and found that exosomes derived from GA-WJMSCs led to the reduced aggregation of alpha-synuclein compared to that in control. Our results suggested that GA could be a potential candidate for strengthening stem cell and exosome therapy for PD.
Collapse
Affiliation(s)
- William Shao-Tsu Chen
- Department of Psychiatry, Tzu Chi General Hospital, Hualien 97004, Taiwan
- School of Medicine Tzu Chi University, Hualien 97004, Taiwan
| | - Tzu-Ying Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shih-Chieh Liao
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Hui-Chuan Kao
- Department of Public Health, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
19
|
Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Based Modulation of Obstructive Sleep Apnea. Int J Mol Sci 2023; 24:ijms24043708. [PMID: 36835120 PMCID: PMC9958695 DOI: 10.3390/ijms24043708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that reside in almost all postnatal tissues where, due to the potent regenerative, pro-angiogenic and immunomodulatory properties, regulate tissue homeostasis. Obstructive sleep apnea (OSA) induces oxidative stress, inflammation and ischemia which recruit MSCs from their niches in inflamed and injured tissues. Through the activity of MSC-sourced anti-inflammatory and pro-angiogenic factors, MSCs reduce hypoxia, suppress inflammation, prevent fibrosis and enhance regeneration of damaged cells in OSA-injured tissues. The results obtained in large number of animal studies demonstrated therapeutic efficacy of MSCs in the attenuation of OSA-induced tissue injury and inflammation. Herewith, in this review article, we emphasized molecular mechanisms which are involved in MSC-based neo-vascularization and immunoregulation and we summarized current knowledge about MSC-dependent modulation of OSA-related pathologies.
Collapse
|
20
|
Adelipour M, Lubman DM, Kim J. Potential applications of mesenchymal stem cells and their derived exosomes in regenerative medicine. Expert Opin Biol Ther 2023; 23:491-507. [PMID: 37147781 PMCID: PMC10330313 DOI: 10.1080/14712598.2023.2211203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
INTRODUCTION Regenerative medicine involves the replacement of damaged cells, tissues, or organs to restore normal function. Mesenchymal stem cells (MSCs) and exosomes secreted by MSCs have unique advantages that make them a suitable candidate in the field of regenerative medicine. AREAS COVERED This article provides a comprehensive overview of regenerative medicine, focusing on the use of MSCs and their exosomes as potential therapies for replacing damaged cells, tissues, or organs. This article discusses the distinct advantages of both MSCs and their secreted exosomes, including their immunomodulatory effects, lack of immunogenicity, and recruitment to damaged areas. While both MSCs and exosomes have these advantages, MSCs also have the unique ability to self-renew and differentiate. This article also assesses the current challenges associated with the application of MSCs and their secreted exosomes in therapy. We have reviewed proposed solutions for improving MSC or exosome therapy, including ex-vivo preconditioning strategies, genetic modification, and encapsulation. Literature search was conducted using Google Scholar and PubMed databases. EXPERT OPINION Providing insight into the future development of MSC and exosome-based therapies and to encourage the scientific community to focus on the identified gaps, develop appropriate guidelines, and enhance the clinical application of these therapies.
Collapse
Affiliation(s)
- Maryam Adelipour
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
21
|
Rodríguez-Eguren A, Gómez-Álvarez M, Francés-Herrero E, Romeu M, Ferrero H, Seli E, Cervelló I. Human Umbilical Cord-Based Therapeutics: Stem Cells and Blood Derivatives for Female Reproductive Medicine. Int J Mol Sci 2022; 23:ijms232415942. [PMID: 36555583 PMCID: PMC9785531 DOI: 10.3390/ijms232415942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
There are several conditions that lead to female infertility, where traditional or conventional treatments have limited efficacy. In these challenging scenarios, stem cell (SC) therapies have been investigated as alternative treatment strategies. Human umbilical cord (hUC) mesenchymal stem cells (hUC-MSC), along with their secreted paracrine factors, extracts, and biomolecules, have emerged as promising therapeutic alternatives in regenerative medicine, due to their remarkable potential to promote anti-inflammatory and regenerative processes more efficiently than other autologous treatments. Similarly, hUC blood derivatives, such as platelet-rich plasma (PRP), or isolated plasma elements, such as growth factors, have also demonstrated potential. This literature review aims to summarize the recent therapeutic advances based on hUC-MSCs, hUC blood, and/or other plasma derivatives (e.g., extracellular vesicles, hUC-PRP, and growth factors) in the context of female reproductive medicine. We present an in-depth analysis of the principal molecules mediating tissue regeneration, compiling the application of these therapies in preclinical and clinical studies, within the context of the human reproductive tract. Despite the recent advances in bioengineering strategies that sustain delivery and amplify the scope of the therapeutic benefits, further clinical trials are required prior to the wide implementation of these alternative therapies in reproductive medicine.
Collapse
Affiliation(s)
- Adolfo Rodríguez-Eguren
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 05610, USA
| | | | - Emilio Francés-Herrero
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Mónica Romeu
- Gynecological Service, Consortium General University Hospital of Valencia, 46014 Valencia, Spain
| | - Hortensia Ferrero
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Emre Seli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 05610, USA
- IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
| | - Irene Cervelló
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
- Correspondence: or
| |
Collapse
|
22
|
Ling L, Hou J, Wang Y, Shu H, Huang Y. Effects of Low-Intensity Pulsed Ultrasound on the Migration and Homing of Human Amnion-Derived Mesenchymal Stem Cells to Ovaries in Rats With Premature Ovarian Insufficiency. Cell Transplant 2022; 31:9636897221129171. [PMID: 36282038 PMCID: PMC9608022 DOI: 10.1177/09636897221129171] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Premature ovarian insufficiency (POI) can cause multiple sequelae and is currently incurable. Mesenchymal stem cell (MSC) transplantation might provide an effective treatment method for POI. However, the clinical application of systemic MSC transplantation is limited by the low efficiency of cell homing to target tissue in vivo, including systemic MSC transplantation for POI treatment. Thus, exploration of methods to promote MSC homing is necessary. This study was to investigate the effects of low-intensity pulsed ultrasound (LIPUS) on the migration and homing of transplanted human amnion–derived MSCs (hAD-MSCs) to ovaries in rats with chemotherapy-induced POI. For LIPUS treatment, hAD-MSCs were exposed to LIPUS or sham irradiation. Chemokine receptor expressions in hAD-MSCs were detected by polymerase chain reaction (PCR), Western blot, and immunofluorescence assays. hAD-MSC migration was detected by wound healing and transwell migration assays. Cyclophosphamide-induced POI rat models were established to evaluate the effects of LIPUS on the homing of systemically transplanted hAD-MSCs to chemotherapy-induced POI ovaries in vivo. We found that hAD-MSCs expressed chemokine receptors. The LIPUS promoted the expression of chemokine receptors, especially CXCR4, in hAD-MSCs. SDF-1 induced hAD-MSC migration. The LIPUS promoted hAD-MSC migration induced by SDF-1 through SDF-1/CXCR4 axis. SDF-1 levels significantly increased in ovaries induced by chemotherapy in POI rats. Pretreating hAD-MSCs with LIPUS increased the number of hAD-MSCs homing to ovaries in rats with chemotherapy-induced POI to some extent. However, the difference was not significant. Both hAD-MSC and LIPUS-pretreated hAD-MSC transplantation reduced ovarian injuries and improved ovarian function in rats with chemotherapy-induced POI. CXCR4 antagonist significantly reduced the number of hAD-MSCs- and LIPUS-pretreated hAD-MSCs homing to POI ovaries, and further reduced their efficacy in POI treatment. According to these findings, pretreating MSCs with LIPUS before transplantation might provide a novel, convenient, and safe technique to explore for improving the homing of systemically transplanted MSCs to target tissue.
Collapse
Affiliation(s)
- Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,Li Ling, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing 400010, China.
| | - Jiying Hou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Han Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubin Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Advance of Mesenchymal Stem Cells in Chronic End-Stage Liver Disease Control. Stem Cells Int 2022; 2022:1526217. [PMID: 36248254 PMCID: PMC9568364 DOI: 10.1155/2022/1526217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022] Open
Abstract
The chronic liver diseases will slowly develop into liver fibrosis, cirrhosis, and even liver cancer if no proper control is performed with high efficiency. Up to now, the most effective treatment for end-stage liver diseases is liver transplantation. However, liver transplantation has the problems of donor deficiency, low matching rate, surgical complications, high cost, and immune rejection. These problems indicate that novel therapeutic strategies are urgently required. Mesenchymal stem cells (MSCs) are somatic stem cells with multidirectional differentiation potential and self-renewal ability. MSCs can secrete a large number of cytokines, chemokines, immunomodulatory molecules, and hepatotrophic factors, as well as produce extracellular vesicles. They alleviate liver diseases by differentiating to hepatocyte-like cells, immunomodulation, homing to the injured site, regulating cell ferroptosis, regulating cell autophagy, paracrine effects, and MSC-mitochondrial transfer. In this review, we focus on the main resources of MSCs, underlying therapeutic mechanisms, clinical applications, and efforts made to improve MSC-based cell therapy efficiency.
Collapse
|
24
|
The Four Pillars for Successful Regenerative Therapy in Endodontics: Stem Cells, Biomaterials, Growth Factors, and Their Synergistic Interactions. Stem Cells Int 2022; 2022:1580842. [PMID: 36193253 PMCID: PMC9526564 DOI: 10.1155/2022/1580842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 01/08/2023] Open
Abstract
Endodontics has made significant progress in regenerative approaches in recent years, thanks to advances in biologically based procedures or regenerative endodontic therapy (RET). In recent years, our profession has witnessed a clear conceptual shift in this therapy. RET was initially based on a blood clot induced by apical bleeding without harvesting the patient’s cells or cell-free RET. Later, the RET encompassed the three principles of tissue engineering, stromal/stem cells, scaffolds, and growth factors, aiming for the regeneration of a functional dentin pulp complex. The regenerated dental pulp will recover the protective mechanisms including innate immunity, tertiary dentin formation, and pain sensitivity. This comprehensive review covers the basic knowledge and practical information for translational applications of stem cell-based RET and tissue engineering procedures for the regeneration of dental pulp. It will also provide overall information on the emerging technologies in biological and synthetic matrices, biomaterials, and signaling molecules, recent advances in stem cell therapy, and updated experimental results. This review brings useful and timely clinical evidence for practitioners to understand the challenges faced for a successful cell-based RET and the importance of preserving or reestablishing tooth vitality. The clinical translation of these current bioengineering approaches will undoubtedly be beneficial to the future practice of endodontics.
Collapse
|
25
|
Ding Y, Luo Q, Que H, Wang N, Gong P, Gu J. Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Agent for the Treatment of Liver Diseases. Int J Mol Sci 2022; 23:ijms231810972. [PMID: 36142881 PMCID: PMC9502508 DOI: 10.3390/ijms231810972] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Liver disease has become a major global health and economic burden due to its broad spectrum of diseases, multiple causes and difficult treatment. Most liver diseases progress to end-stage liver disease, which has a large amount of matrix deposition that makes it difficult for the liver and hepatocytes to regenerate. Liver transplantation is the only treatment for end-stage liver disease, but the shortage of suitable organs, expensive treatment costs and surgical complications greatly reduce patient survival rates. Therefore, there is an urgent need for an effective treatment modality. Cell-free therapy has become a research hotspot in the field of regenerative medicine. Mesenchymal stem cell (MSC)-derived exosomes have regulatory properties and transport functional "cargo" through physiological barriers to target cells to exert communication and regulatory activities. These exosomes also have little tumorigenic risk. MSC-derived exosomes promote hepatocyte proliferation and repair damaged liver tissue by participating in intercellular communication and regulating signal transduction, which supports their promise as a new strategy for the treatment of liver diseases. This paper reviews the physiological functions of exosomes and highlights the physiological changes and alterations in signaling pathways related to MSC-derived exosomes for the treatment of liver diseases in some relevant clinical studies. We also summarize the advantages of exosomes as drug delivery vehicles and discuss the challenges of exosome treatment of liver diseases in the future.
Collapse
Affiliation(s)
| | | | | | | | - Puyang Gong
- Correspondence: (P.G.); (J.G.); Tel.: +86-28-85656463 (J.G.)
| | - Jian Gu
- Correspondence: (P.G.); (J.G.); Tel.: +86-28-85656463 (J.G.)
| |
Collapse
|
26
|
Yang Z, Wu C, Shi H, Luo X, Sun H, Wang Q, Zhang D. Advances in Barrier Membranes for Guided Bone Regeneration Techniques. Front Bioeng Biotechnol 2022; 10:921576. [PMID: 35814003 PMCID: PMC9257033 DOI: 10.3389/fbioe.2022.921576] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Guided bone regeneration (GBR) is a widely used technique for alveolar bone augmentation. Among all the principal elements, barrier membrane is recognized as the key to the success of GBR. Ideal barrier membrane should have satisfactory biological and mechanical properties. According to their composition, barrier membranes can be divided into polymer membranes and non-polymer membranes. Polymer barrier membranes have become a research hotspot not only because they can control the physical and chemical characteristics of the membranes by regulating the synthesis conditions but also because their prices are relatively low. Still now the bone augment effect of barrier membrane used in clinical practice is more dependent on the body’s own growth potential and the osteogenic effect is difficult to predict. Therefore, scholars have carried out many researches to explore new barrier membranes in order to improve the success rate of bone enhancement. The aim of this study is to collect and compare recent studies on optimizing barrier membranes. The characteristics and research progress of different types of barrier membranes were also discussed in detail.
Collapse
Affiliation(s)
- Ze Yang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chang Wu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyu Luo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hui Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Qiang Wang, ; Dan Zhang,
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Qiang Wang, ; Dan Zhang,
| |
Collapse
|
27
|
Łukowicz K, Zagrajczuk B, Truchan K, Niedzwiedzki Ł, Cholewa-Kowalska K, Osyczka AM. Chemical Compounds Released from Specific Osteoinductive Bioactive Materials Stimulate Human Bone Marrow Mesenchymal Stem Cell Migration. Int J Mol Sci 2022; 23:ijms23052598. [PMID: 35269740 PMCID: PMC8909964 DOI: 10.3390/ijms23052598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023] Open
Abstract
In this work, a poly(L-lactide-co-glycolide) (PLGA)-based composite was enriched with one of the following sol-gel bioactive glasses (SBG) at 50 wt.%: A1—40 mol% SiO2, 60 mol% CaO, CaO/SiO2 ratio of 1.50; S1—80 mol% SiO2, 20 mol% CaO, CaO/SiO2 ratio of 0.25; A2—40 mol% SiO2, 54 mol% CaO, 6 mol% P2O5, CaO/SiO2 ratio of 1.35; S2—80 mol% SiO2,16 mol% CaO, 4 mol% P2O5, CaO/SiO2 ratio of 0.20. The composites and PLGA control sheets were then soaked for 24 h in culture media, and the obtained condition media (CM) were used to treat human bone marrow stromal cells (hBMSCs) for 72 h. All CMs from the composites increased ERK 1/2 activity vs. the control PLGA CM. However, expressions of cell migration-related c-Fos, osteopontin, matrix metalloproteinase-2, C-X-C chemokine receptor type 4, vascular endothelial growth factor, and bone morphogenetic protein 2 were significantly increased only in cells treated with the CM from the A1/PLGA composite. This CM also significantly increased the rate of human BMSC migration but did not affect cell metabolic activity. These results indicate important biological markers that are upregulated by products released from the bioactive composites of a specific chemical composition, which may eventually prompt osteoprogenitor cells to colonize the bioactive material and accelerate the process of tissue regeneration.
Collapse
Affiliation(s)
- Krzysztof Łukowicz
- Department Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (K.Ł.); (K.T.)
| | - Barbara Zagrajczuk
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland; (B.Z.); (K.C.-K.)
| | - Karolina Truchan
- Department Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (K.Ł.); (K.T.)
| | - Łukasz Niedzwiedzki
- Department of Orthopedics and Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, Kopernika 19e, 31-501 Krakow, Poland;
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland; (B.Z.); (K.C.-K.)
| | - Anna M. Osyczka
- Department Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (K.Ł.); (K.T.)
- Correspondence:
| |
Collapse
|
28
|
Ling L, Hou J, Liu D, Tang D, Zhang Y, Zeng Q, Pan H, Fan L. Important role of the SDF-1/CXCR4 axis in the homing of systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) to ovaries in rats with chemotherapy-induced premature ovarian insufficiency (POI). Stem Cell Res Ther 2022; 13:79. [PMID: 35197118 PMCID: PMC8867754 DOI: 10.1186/s13287-022-02759-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Chemotherapy can induce premature ovarian insufficiency (POI). POI causes multiple sequelae and is currently incurable. As shown in our previous studies, systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) home to ovaries with chemotherapy-induced POI and subsequently reduce ovarian injury and improve ovarian function in rats with POI. However, the cellular mechanisms that direct the migration and homing of hAD-MSCs to ovaries with chemotherapy-induced POI are incompletely understood. This study investigated the role of the SDF-1/CXCR4 axis in the migration and homing of systemically transplanted hAD-MSCs to ovaries with chemotherapy-induced POI and its relevant downstream signalling pathways. Methods CXCR4 expression in hAD-MSCs was assessed using Western blotting and immunofluorescence staining. hAD-MSC migration was tested using Transwell migration assays. SDF-1 levels were detected using ELISA. Seventy-two female SD rats were randomly divided into the control, POI, hAD-MSCs and hAD-MSCs + AMD3100 groups. Cyclophosphamide was used to establish rat POI models. For inhibitor treatment, hAD-MSCs were pretreated with AMD3100 before transplantation. PKH26-labeled hAD-MSCs were injected into the tail vein of POI rats 24 h after chemotherapy. After hAD-MSC transplantation, the homing of hAD-MSCs to ovaries and ovarian function and pathological changes were examined. We further investigated the molecular mechanisms by detecting the PI3K/Akt and ERK1/2 signalling pathways. Results hAD-MSCs expressed CXCR4. SDF-1 induced hAD-MSC migration in vitro. SDF-1 levels in ovaries and serum were significantly increased in rats with chemotherapy-induced POI, and ovaries with POI induced the homing of hAD-MSCs expressing CXCR4. Blocking the SDF-1/CXCR4 axis with AMD3100 significantly reduced the number of hAD-MSCs homing to ovaries with POI and further reduced their efficacy in POI treatment. The binding of SDF-1 to CXCR4 activated the PI3K/Akt signalling pathway, and LY294002 significantly inhibited hAD-MSC migration induced by SDF-1 in vitro. Moreover, inhibition of the PI3K/Akt signalling pathway significantly reduced the number of systemically transplanted hAD-MSCs homing to chemotherapy-induced ovaries in rats with POI. Conclusions SDF-1/CXCR4 axis partially mediates the migration and homing of systemically transplanted hAD-MSCs to the ovaries of rats with chemotherapy-induced POI, and the PI3K/Akt signalling pathway might be involved in the migration and homing of hAD-MSCs mediated by the SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China.
| | - Jiying Hou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China
| | - Dandan Liu
- Department of Otolaryngology, The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| | - Dongyuan Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China
| | - Yanqin Zhang
- Department of Obstetrics and Gynecology, Wushan County People's Hospital of Chongqing, Chongqing, 404700, China
| | - Qianru Zeng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China
| | - Heng Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China
| | - Ling Fan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China
| |
Collapse
|
29
|
Vitale E, Rossin D, Perveen S, Miletto I, Lo Iacono M, Rastaldo R, Giachino C. Silica Nanoparticle Internalization Improves Chemotactic Behaviour of Human Mesenchymal Stem Cells Acting on the SDF1α/CXCR4 Axis. Biomedicines 2022; 10:biomedicines10020336. [PMID: 35203545 PMCID: PMC8961775 DOI: 10.3390/biomedicines10020336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Human mesenchymal stem cell (hMSC)-based therapy is an emerging resource in regenerative medicine. Despite the innate ability of hMSCs to migrate to sites of injury, homing of infused hMSCs to the target tissue is inefficient. It was shown that silica nanoparticles (SiO2-NPs), previously developed to track the stem cells after transplantation, accumulated in lysosomes leading to a transient blockage of the autophagic flux. Since CXCR4 turnover is mainly regulated by autophagy, we tested the effect of SiO2-NPs on chemotactic migration of hMSCs along the SDF1α/CXCR4 axis that plays a pivotal role in directing MSC homing to sites of injury. Our results showed that SiO2-NP internalization augmented CXCR4 surface levels. We demonstrated that SiO2-NP-dependent CXCR4 increase was transient, and it reversed at the same time as lysosomal compartment normalization. Furthermore, the autophagy inhibitor Bafilomycin-A1 reproduced CXCR4 overexpression in control hMSCs confirming the direct effect of the autophagic degradation blockage on CXCR4 expression. Chemotaxis assays showed that SiO2-NPs increased hMSC migration toward SDF1α. In contrast, migration improvement was not observed in TNFα/TNFR axis, due to the proteasome-dependent TNFR regulation. Overall, our findings demonstrated that SiO2-NP internalization increases the chemotactic behaviour of hMSCs acting on the SDF1α/CXCR4 axis, unmasking a high potential to improve hMSC migration to sites of injury and therapeutic efficacy upon cell injection in vivo.
Collapse
Affiliation(s)
- Emanuela Vitale
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (E.V.); (D.R.); (S.P.); (M.L.I.); (C.G.)
| | - Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (E.V.); (D.R.); (S.P.); (M.L.I.); (C.G.)
| | - Sadia Perveen
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (E.V.); (D.R.); (S.P.); (M.L.I.); (C.G.)
| | - Ivana Miletto
- Department of Science and Technological Innovation, University of Eastern Piedmont, 15121 Alessandria, Italy;
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (E.V.); (D.R.); (S.P.); (M.L.I.); (C.G.)
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (E.V.); (D.R.); (S.P.); (M.L.I.); (C.G.)
- Correspondence:
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (E.V.); (D.R.); (S.P.); (M.L.I.); (C.G.)
| |
Collapse
|
30
|
Hosseini NF, Dalirfardouei R, Aliramaei MR, Najafi R. Stem cells or their exosomes: which is preferred in COVID-19 treatment? Biotechnol Lett 2022; 44:159-177. [PMID: 35043287 PMCID: PMC8765836 DOI: 10.1007/s10529-021-03209-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
It only took 8 months for the pneumonia caused by a previously unknown coronavirus to turn into a global pandemic of unprecedentedly far-reaching implications. Failure of the already discovered treatment measures opened up a new opportunity to evaluate the potentials of mesenchymal stem cells and their extracellular vesicles (EVs), exosomes in particular. Eventually, the initial success experienced after the use of MSCs in treating the new pneumonia by Lnge and his team backed up the idea of MSC-based therapies and pushed them closer to becoming a reality. However, MSC-related concerns regarding safety such as abnormal differentiation, spontaneous malignant and the formation of ectopic tissues have triggered the replacement of MSCs by their secreted exosomes. The issue has been further strengthened by the fact that the exosomes leave similar treatment impacts when compared to their parental cells. In recent years, much attention has been paid to the use of MSC-derived exosomes in the treatment of a variety of diseases. With a primary focus on COVID-19 and its current treatment methods, the present review looks into the potentials of MSCs and MSC-derived exosomes in battling the ongoing pandemic. Finally, the research will draw an analogy between exosomes and their parental cells, when it comes to the progresses and challenges in using exosomes as a large-scale treatment method.
Collapse
Affiliation(s)
- Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Dalirfardouei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
31
|
Tang N, Wang X, Zhu J, Sun K, Li S, Tao K. Labelling stem cells with a nanoprobe for evaluating the homing behaviour in facial nerve injury repair. Biomater Sci 2022; 10:808-818. [PMID: 34989358 DOI: 10.1039/d1bm01823j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is crucial and clinically relevant to clarify the homing efficiency and retention of stem cells in different implanting strategies of cell therapy for various injuries. However, the need for a tool for investigating the mechanisms is still unmet. We herein introduce multi-modal BaGdF5:Yb,Tm nanoparticles as a nanoprobe to label adipose-derived stem cells (ADSCs) and detect the homing behavior with a micro-computed tomography (micro-CT) imaging technique. The migration of cells injected locally or intravenously, with or without a chemokine, CXCL 12, was compared. A higher homing efficiency of ADSCs was observed in both intravenously injected groups, in contrast to the low efficiency of cell retention in local implantation. Meanwhile, CXCL 12 promoted the homing of ADSCs, especially in the intravenous route. Nonetheless, the administration of CXCL 12 showed its therapeutic efficacy, whereas intravenous injection of ADSCs almost did not. Our work provided a tool for in vivo imaging of the behavior of implanted cells in preclinical studies of cell therapy, and more importantly, implied that the parameters for implanting stem cells in clinical operation should be carefully considered.
Collapse
Affiliation(s)
- Na Tang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xueyi Wang
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P. R. China.
| | - Jin Zhu
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P. R. China.
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P. R. China.
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
32
|
Ye Y, Zhao X, Xu Y, Yu J. Hypoxia-Inducible Non-coding RNAs in Mesenchymal Stem Cell Fate and Regeneration. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.799716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into multiple cell lines, which makes them an important source of cells for tissue engineering applications. They are defined by the capability to renew themselves and maintain pluripotency. This ability is modulated by the balance between complex cues from cellular microenvironment. Self-renewal and differentiation abilities are regulated by particular microenvironmental signals. Oxygen is considered to be an important part of cell microenvironment, which not only acts as a metabolic substrate but also a signal molecule. It has been proved that MSCs are hypoxic in the physiological environment. Signals from MSCs' microenvironment or niche which means the anatomical location of the MSCs, maintain the final properties of MSCs. Physiological conditions like oxygen tension are deemed to be a significant part of the mesenchymal stem cell niche, and have been proved to be involved in modulating embryonic and adult MSCs. Non-coding RNAs (ncRNAs), which play a key role in cell signal transduction, transcription and translation of genes, have been widely concerned as epigenetic regulators in a great deal of tissues. With the rapid development of bioinformatics analysis tools and high-throughput RNA sequencing technology, more and more evidences show that ncRNAs play a key role in tissue regeneration. It shows potential as a biomarker of MSC differentiation. In this paper, we reviewed the physiological correlation of hypoxia as a unique environmental parameter which is conducive to MSC expansion and maintenance, discussed the correlation of tissue engineering, and summarized the influence of hypoxia related ncRNAs on MSCs' fate and regeneration. This review will provide reference for future research of MSCs' regeneration.
Collapse
|
33
|
Bidkhori HR, Bahrami AR, Farshchian M, Heirani-Tabasi A, Mirahmadi M, Hasanzadeh H, Ahmadiankia N, Faridhosseini R, Dastpak M, Shabgah AG, Matin MM. Mesenchymal Stem/Stromal Cells Overexpressing CXCR4 R334X Revealed Enhanced Migration: A Lesson Learned from the Pathogenesis of WHIM Syndrome. Cell Transplant 2021; 30:9636897211054498. [PMID: 34807749 PMCID: PMC8647223 DOI: 10.1177/09636897211054498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
C-X-C chemokine receptor type 4 (CXCR4), initially recognized as a co-receptor
for HIV, contributes to several disorders, including the WHIM (Warts,
Hypogammaglobulinemia, Infections, and Myelokathexis) syndrome. CXCR4 binds to
its ligand SDF-1 to make an axis involved in the homing property of stem cells.
This study aimed to employ WHIM syndrome pathogenesis as an inspirational
approach to reinforce cell therapies. Wild type and WHIM-type variants of the
CXCR4 gene were chemically synthesized and cloned in the
pCDH-513B-1 lentiviral vector. Molecular cloning of the synthetic genes was
confirmed by DNA sequencing, and expression of both types of CXCR4 at the
protein level was confirmed by western blotting in HEK293T cells. Human
adipose-derived mesenchymal stem cells (Ad-MSCs) were isolated, characterized,
and subjected to lentiviral transduction with Wild type and WHIM-type variants
of CXCR4. The presence of copGFP-positive MSCs confirmed the
high efficiency of transduction. The migration ability of both groups of
transduced cells was then assessed by transwell migration assay in the presence
or absence of a CXCR4-blocking agent. Our qRT-PCR results showed overexpression
of CXCR4 at mRNA level in both groups of transduced MSCs, and
expression of WHIM-type CXCR4 was significantly higher than
Wild type CXCR4 (P<0.05). Our results
indicated that the migration of genetically modified MSCs expressing WHIM-type
CXCR4 had significantly enhanced towards SDF1 in comparison with Wild type CXCR4
(P<0.05), while it was reduced after treatment with
CXCR4 antagonist. These data suggest that overexpression of WHIM-type CXCR4
could lead to enhanced and sustained expression of CXCR4 on human MSCs, which
would increase their homing capability; hence it might be an appropriate
strategy to improve the efficiency of cell-based therapies.
Collapse
Affiliation(s)
- Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Moein Farshchian
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Asieh Heirani-Tabasi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Halimeh Hasanzadeh
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | | | - Reza Faridhosseini
- Department of Immunology, Mashhad Universityof Medical Sciences, Mashhad, Iran
| | - Mahtab Dastpak
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | | | - Maryam M Matin
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
34
|
Deng Z, Zhou J, Mu X, Gu J, Li X, Shao Q, Li J, Yang C, Han G, Zhao J, Xia Y. Regulatory T Cells Improved the Anti-cirrhosis Activity of Human Amniotic Mesenchymal Stem Cell in the Liver by Regulating the TGF-β-Indoleamine 2,3-Dioxygenase Signaling. Front Cell Dev Biol 2021; 9:737825. [PMID: 34712665 PMCID: PMC8545991 DOI: 10.3389/fcell.2021.737825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a progression stage of chronic liver disease, while current therapies cannot cure or attune cirrhosis effectively. Human amniotic mesenchymal stromal cell (hAMSC) presented immunoregulatory and tissue repairability of multiple illnesses. Regulatory T cells (Treg) had been proved to be functional in reducing immune cell activity. We showed that co-infusion of hAMSC and Treg prevented mild liver fibrosis comparing with hAMSC or Treg alone group. In vitro study indicated that the addition of Treg or the supernatant of Treg improved the hepatocyte growth factor (HGF) secreting and cell differentiation ability of hAMSC. Reduction of TGF-β significantly decreased the HGF secreting and differentiation of hAMSC. Multiple signal neutralizers were added to the culture to understand further the mechanism, which showed that 1-MT, the suppressor of Indoleamine 2,3-dioxygenase (IDO), was involved in the effect of TGF-β in regulating hAMSC. Depletion of TGF-β or IDO signaling successfully abolished the effect of Treg in improving hAMSC's function both in vitro and vivo. Finally, our result indicated that Treg improved the function of hAMSC by regulating the TGF-β-IDO signaling and co-infusion of hAMSC and Treg provided a promising approach for treating liver cirrhosis.
Collapse
Affiliation(s)
- Zhenhua Deng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Xiaoxin Mu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Xiangyu Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Qing Shao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Jinyang Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Chao Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Guoyong Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Jie Zhao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Wu MC, Meng QH. Current understanding of mesenchymal stem cells in liver diseases. World J Stem Cells 2021; 13:1349-1359. [PMID: 34630867 PMCID: PMC8474713 DOI: 10.4252/wjsc.v13.i9.1349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/01/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Liver diseases caused by various factors have become a significant threat to public health worldwide. Liver transplantation has been considered as the only effective treatment for end-stage liver diseases; however, it is limited by the shortage of donor organs, postoperative complications, long-term immunosuppression, and high cost of treatment. Thus, it is not available for all patients. Recently, mesenchymal stem cells (MSCs) transplantation has been extensively explored for repairing hepatic injury in various liver diseases. MSCs are multipotent adult progenitor cells originated from the embryonic mesoderm, and can be found in mesenchymal tissues including the bone marrow, umbilical cord blood, adipose tissue, liver, lung, and others. Although the precise mechanisms of MSC transplantation remain mysterious, MSCs have been demonstrated to be able to prevent the progression of liver injury and improve liver function. MSCs can self-renew by dividing, migrating to injury sites and differentiating into multiple cell types including hepatocytes. Additionally, MSCs have immune-modulatory properties and release paracrine soluble factors. Indeed, the safety and effectiveness of MSC therapy for liver diseases have been demonstrated in animals. However, pre-clinical and clinical trials are largely required to confirm its safety and efficacy before large scale clinical application. In this review, we will explore the molecular mechanisms underlying therapeutic effects of MSCs on liver diseases. We also summarize clinical advances in MSC-based therapies.
Collapse
Affiliation(s)
- Mu-Chen Wu
- Department of Medical Oncology,You An Hospital, Capital Medical University, Beijing 100069, China
| | - Qing-Hua Meng
- Department of Medical Oncology,You An Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
36
|
Dapkute D, Pleckaitis M, Bulotiene D, Daunoravicius D, Rotomskis R, Karabanovas V. Hitchhiking Nanoparticles: Mesenchymal Stem Cell-Mediated Delivery of Theranostic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43937-43951. [PMID: 34499462 DOI: 10.1021/acsami.1c10445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotechnology has emerged as a promising solution to permanent elimination of cancer. However, nanoparticles themselves lack specificity to tumors. Due to enhanced migration to tumors, mesenchymal stem cells (MSCs) were suggested as cell-mediated delivery vehicles of nanoparticles. In this study, we have constructed a complex composed of photoluminescent quantum dots (QDs) and a photosensitizer chlorin e6 (Ce6) to obtain multifunctional nanoparticles, combining cancer diagnostic and therapeutic properties. QDs serve as energy donors-excited QDs transfer energy to the attached Ce6 via Förster resonance energy transfer, which in turn generates reactive oxygen species. Here, the physicochemical properties of the QD-Ce6 complex and singlet oxygen generation were measured, and the stability in protein-rich media was evaluated, showing that the complex remains the most stable in protein-free medium. In vitro studies on MSC and cancer cell response to the QD-Ce6 complex revealed the complex-loaded MSCs' potential to transport theranostic nanoparticles and induce cancer cell death. In vivo studies proved the therapeutic efficacy, as the survival of tumor-bearing mice was statistically significantly increased, while tumor progression and metastases were slowed down.
Collapse
Affiliation(s)
- Dominyka Dapkute
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio 3B, 08406 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10223 Vilnius, Lithuania
| | - Marijus Pleckaitis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio 3B, 08406 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10223 Vilnius, Lithuania
| | - Danute Bulotiene
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio 3B, 08406 Vilnius, Lithuania
| | - Dainius Daunoravicius
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21/27, 03101 Vilnius, Lithuania
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio 3B, 08406 Vilnius, Lithuania
- Biophotonics Group, Laser Research Centre, Vilnius University, Sauletekio Ave. 10, 10223 Vilnius, Lithuania
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio 3B, 08406 Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio Ave. 11, 10221 Vilnius, Lithuania
| |
Collapse
|
37
|
LIU L, YANG F. Application of Modified Mesenchymal Stem Cells Transplantation in the Treatment of Liver Injury. Physiol Res 2021. [DOI: 10.33549/physiolres.934623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Acute and chronic hepatitis, cirrhosis, and other liver diseases pose a serious threat to human health; however, liver transplantation is the only reliable treatment for the terminal stage of liver diseases. Previous researchers have shown that mesenchymal stem cells (MSCs) are characterized by differentiation and paracrine effects, as well as anti-oxidative stress and immune regulation functions. When MSCs are transplanted into animals, they migrate to the injured liver tissue along with the circulation, to protect the liver and alleviate the injury through the paracrine, immune regulation and other characteristics, making mesenchymal stem cell transplantation a promising alternative therapy for liver diseases. Although the efficacy of MSCs transplantation has been confirmed in various animal models of liver injury, many researchers have also proposed various pretreatment methods to improve the efficacy of mesenchymal stem cell transplantation, but there is still lack a set of scientific methods system aimed at improving the efficacy of transplantation therapy in scientific research and clinical practice. In this review, we summarize the possible mechanisms of MSCs therapy and compare the existing methods of MSCs modification corresponding to the treatment mechanism, hoping to provide as a reference to help future researchers explore a safe and simple transplantation strategy.
Collapse
Affiliation(s)
- L LIU
- School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, China
| | - F YANG
- School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, China
| |
Collapse
|
38
|
Waters SL, Schumacher LJ, El Haj AJ. Regenerative medicine meets mathematical modelling: developing symbiotic relationships. NPJ Regen Med 2021; 6:24. [PMID: 33846347 PMCID: PMC8042047 DOI: 10.1038/s41536-021-00134-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 02/26/2021] [Indexed: 02/01/2023] Open
Abstract
Successful progression from bench to bedside for regenerative medicine products is challenging and requires a multidisciplinary approach. What has not yet been fully recognised is the potential for quantitative data analysis and mathematical modelling approaches to support this process. In this review, we highlight the wealth of opportunities for embedding mathematical and computational approaches within all stages of the regenerative medicine pipeline. We explore how exploiting quantitative mathematical and computational approaches, alongside state-of-the-art regenerative medicine research, can lead to therapies that potentially can be more rapidly translated into the clinic.
Collapse
Affiliation(s)
- S L Waters
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| | - L J Schumacher
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - A J El Haj
- Healthcare Technology Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| |
Collapse
|
39
|
Lam G, Zhou Y, Wang JX, Tsui YP. Targeting mesenchymal stem cell therapy for severe pneumonia patients. World J Stem Cells 2021; 13:139-154. [PMID: 33708343 PMCID: PMC7933990 DOI: 10.4252/wjsc.v13.i2.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/03/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Pneumonia is the inflammation of the lungs and it is the world's leading cause of death for children under 5 years of age. The latest coronavirus disease 2019 (COVID-19) virus is a prominent culprit to severe pneumonia. With the pandemic running rampant for the past year, more than 1590000 deaths has occurred worldwide up to December 2020 and are substantially attributable to severe pneumonia and induced cytokine storm. Effective therapeutic approaches in addition to the vaccines and drugs under development are hence greatly sought after. Therapies harnessing stem cells and their derivatives have been established by basic research for their versatile capacity to specifically inhibit inflammation due to pneumonia and prevent alveolar/pulmonary fibrosis while enhancing antibacterial/antiviral immunity, thus significantly alleviating the severe clinical conditions of pneumonia. In recent clinical trials, mesenchymal stem cells have shown effectiveness in reducing COVID-19-associated pneumonia morbidity and mortality; positioning these cells as worthy candidates for combating one of the greatest challenges of our time and shedding light on their prospects as a next-generation therapy to counter future challenges.
Collapse
Affiliation(s)
- Guy Lam
- School of Biomedical Sciences, University of Hong Kong, Hong Kong 999077, China
| | - Yuan Zhou
- Research and Development, Help Therapeutics Co. Ltd., Nanjing 211100, Jiangsu Province, China
| | - Jia-Xian Wang
- Research and Development, Help Therapeutics Co. Ltd., Nanjing 211100, Jiangsu Province, China
| | - Yat-Ping Tsui
- Research and Development, Help Therapeutics Co. Ltd., Nanjing 211100, Jiangsu Province, China.
| |
Collapse
|
40
|
Wang Y, Zhang P, Wei Y, Shen K, Xiao L, Miron RJ, Zhang Y. Cell-Membrane-Display Nanotechnology. Adv Healthc Mater 2021; 10:e2001014. [PMID: 33000917 DOI: 10.1002/adhm.202001014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/13/2020] [Indexed: 12/19/2022]
Abstract
Advances in material science have set the stage for nanoparticle-based research with potent applications for the diagnosis, bioimaging, and precise treatment of diseases. Despite the wide range of biomaterials developed, the rational design of biomaterials with predictable bioactivity and safety remains a critical challenge. In recent years, the field of cell-membrane-based therapeutics has emerged as a promising platform for addressing unmet medical needs. The utilization of natural cell membranes endows biomaterials with a remarkable ability to serve as biointerfaces that interact with the host environment. To improve the function and efficacy of cell-membrane-based therapeutics, a series of novel strategies is developed as cell-membrane-display nanotechnology, which utilizes various methods to selectively display therapeutic molecules of cell membranes on nanoparticles. Although cell-membrane-display nanotechnology remains in the early phases, considerable work is currently being conducted in the field. This review discusses details of innovative strategies for displaying cell-membrane molecules, including the following: 1) displaying molecules of cell membranes on biomaterials, 2) pretreating cell membranes to induce increased expression of inherent molecules of cell membranes and enhance their function, and 3) inserting additional functional molecules on cell membranes. For each area, the theoretical basis, application scenarios, and potential development are highlighted.
Collapse
Affiliation(s)
- Yulan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Peng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Yan Wei
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Kailun Shen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Leyi Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Richard J Miron
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| |
Collapse
|
41
|
Che K, Liu X, Chi J, Li P, Gao J, Fu Z, Yan S, Xing X, Hu J. The effects of adipose-derived mesenchymal stem cells combined with sodium selenite on Hashimoto's thyroiditis. Am J Transl Res 2020; 12:6422-6433. [PMID: 33194040 PMCID: PMC7653570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Recent research found that sodium selenite (Na2SeO3) could ameliorate oxidative damage in patients with Hashimoto's thyroiditis (HT). Additionally, the effects of adipose-derived mesenchymal stem cells (AMSCs) in an animal model of HT were also reported. However, the effects of AMSCs combined with Na2SeO3 on HT are unknown. We investigated the combined effects of AMSCs and Na2SeO3 in a rat model of HT and the in vitro effect of Na2SeO3 on AMSCs using gene microarray analyses. In the HT rat model, the combination of AMSCs and Na2SeO3 restored thyroid tissue structure to that of normal controls and increased the levels of most antioxidant and inflammatory cytokines examined, but decreased the levels of interleukin 10 (IL-10) in HT thyroid tissues. At 0.5-20 µM, Na2SeO3 promoted AMSC growth and increased the levels of reduced glutathione and total antioxidant capacity in AMSCs (P<0.05). Na2SeO3 increased the levels of hepatocyte growth factor (HGF), transforming growth factor beta (TGF-β), and stem cell factor (SCF) in AMSC culture supernatants. The results of the gene microarray analyses showed that the expression levels of certain genes involved in mitosis, DNA replication and repair, ubiquitination, synthesis and metabolism, and mitochondrial transport changed in response to Na2SeO3 treatment. In conclusion, the combination of AMSCs and Na2SeO3 restored the function and structure of the thyroid in an HT model, and Na2SeO3 promoted the growth, improved the secretion, and the antioxidant capacity of AMSCs in vitro. This combination treatment may provide a new therapy for patients with HT.
Collapse
Affiliation(s)
- Kui Che
- The Laboratory of Thyroid Diseases, The Affiliated Hospital of Qingdao UniversityNo. 16 Jiangsu Road, Qingdao, Shandong, China
| | - Xiaoyi Liu
- Breast Diseases Center, The Affiliated Hospital of Qingdao UniversityNo. 59 Haier Road, Qingdao, Shandong, China
| | - Jingwei Chi
- The Laboratory of Thyroid Diseases, The Affiliated Hospital of Qingdao UniversityNo. 16 Jiangsu Road, Qingdao, Shandong, China
| | - Peng Li
- Department of Endocrinology, The Affiliated Hospital of Qingdao UniversityNo. 16 Jiangsu Road, Qingdao, Shandong, China
| | - Junjie Gao
- Department of Endocrinology, The Affiliated Hospital of Qingdao UniversityNo. 16 Jiangsu Road, Qingdao, Shandong, China
| | - Zhengju Fu
- Department of Endocrinology, The Affiliated Hospital of Qingdao UniversityNo. 16 Jiangsu Road, Qingdao, Shandong, China
| | - Shengli Yan
- Department of Endocrinology, The Affiliated Hospital of Qingdao UniversityNo. 16 Jiangsu Road, Qingdao, Shandong, China
| | - Xiaoming Xing
- Department of Pathology, The Affiliated Hospital of Qingdao UniversityNo. 16 Jiangsu Road, Qingdao, Shandong, China
| | - Jianxia Hu
- The Laboratory of Thyroid Diseases, The Affiliated Hospital of Qingdao UniversityNo. 16 Jiangsu Road, Qingdao, Shandong, China
| |
Collapse
|
42
|
Haque N, Fareez IM, Fong LF, Mandal C, Kasim NHA, Kacharaju KR, Soesilawati P. Role of the CXCR4-SDF1-HMGB1 pathway in the directional migration of cells and regeneration of affected organs. World J Stem Cells 2020. [DOI: 10.4252/wjsc.v12.i9.0000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
43
|
Haque N, Fareez IM, Fong LF, Mandal C, Abu Kasim NH, Kacharaju KR, Soesilawati P. Role of the CXCR4-SDF1-HMGB1 pathway in the directional migration of cells and regeneration of affected organs. World J Stem Cells 2020; 12:938-951. [PMID: 33033556 PMCID: PMC7524697 DOI: 10.4252/wjsc.v12.i9.938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/18/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, several studies have reported positive outcomes of cell-based therapies despite insufficient engraftment of transplanted cells. These findings have created a huge interest in the regenerative potential of paracrine factors released from transplanted stem or progenitor cells. Interestingly, this notion has also led scientists to question the role of proteins in the secretome produced by cells, tissues or organisms under certain conditions or at a particular time of regenerative therapy. Further studies have revealed that the secretomes derived from different cell types contain paracrine factors that could help to prevent apoptosis and induce proliferation of cells residing within the tissues of affected organs. This could also facilitate the migration of immune, progenitor and stem cells within the body to the site of inflammation. Of these different paracrine factors present within the secretome, researchers have given proper consideration to stromal cell-derived factor-1 (SDF1) that plays a vital role in tissue-specific migration of the cells needed for regeneration. Recently researchers recognized that SDF1 could facilitate site-specific migration of cells by regulating SDF1-CXCR4 and/or HMGB1-SDF1-CXCR4 pathways which is vital for tissue regeneration. Hence in this study, we have attempted to describe the role of different types of cells within the body in facilitating regeneration while emphasizing the HMGB1-SDF1-CXCR4 pathway that orchestrates the migration of cells to the site where regeneration is needed.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Ismail M Fareez
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Liew Fong Fong
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Chanchal Mandal
- Biotechnology and Genetic Engineering Discipline, Life Science, Khulna University, Khulna 9208, Bangladesh
| | - Noor Hayaty Abu Kasim
- Faculty of Dentistry, University Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya 411007, Indonesia
| | - Kranthi Raja Kacharaju
- Department of Conservative Dentistry, Faculty of Dentistry MAHSA University, Selangor 42610, Malaysia
| | - Pratiwi Soesilawati
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
44
|
Liu S, Liu F, Zhou Y, Jin B, Sun Q, Guo S. Immunosuppressive Property of MSCs Mediated by Cell Surface Receptors. Front Immunol 2020; 11:1076. [PMID: 32849489 PMCID: PMC7399134 DOI: 10.3389/fimmu.2020.01076] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
In the past decade, mesenchymal stem cells (MSCs) tend to exhibit inherent tropism for refractory inflammatory diseases and engineered MSCs have appeared on the market as therapeutic agents. Recently, engineered MSCs target to cell surface molecules on immune cells has been a new strategy to improve MSC applications. In this review, we discuss the roles of multiple receptors (ICAM-1, Gal-9, PD-L1, TIGIT, CD200, and CXCR4) in the process of MSCs' immunosuppressive properties. Furthermore, we discuss the principles and strategies for developing receptor-regulated MSCs and their mechanisms of action and the challenges of using MSCs as immunosuppressive therapies.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Fei Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Baeku Jin
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
45
|
Vives J, Casademont-Roca A, Martorell L, Nogués N. Beyond chimerism analysis: methods for tracking a new generation of cell-based medicines. Bone Marrow Transplant 2020; 55:1229-1239. [PMID: 32024991 DOI: 10.1038/s41409-020-0822-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
The analysis of chimerism is crucial to determine the status of patients receiving hematopoietic stem cell transplantation. The variety of relevant techniques available today range from those that analyse nucleic acids (i.e. polymerase chain reaction based, next generation sequencing) and cellular phenotype (i.e. flow cytometry) to sophisticated imaging (particularly multimodal imaging using labelling agents). However, current developments of advanced therapies bring chimerism studies into a new dimension in which methods for detection of donor cells in the patient need to adapt to a wider range of cell- and gene-based medicines, routes of administration, target organs and pathologies. Herein we describe and analyze the toolkit of suitable labelling and detection methodologies with actual examples along with a discussion on challenges ahead and potential solutions. Remarkably, existing methods commonly used in chimerism analysis are suitable for use with new cell- and gene-based medicines. Indeed, new developments may facilitate the evolution and combination of such methodologies to the use of non-invasive and highly informative approaches.
Collapse
Affiliation(s)
- Joaquim Vives
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain.
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain.
| | - Aina Casademont-Roca
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain
| | - Lluís Martorell
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain
| | - Núria Nogués
- Departament de Medicina, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain
- Laboratori d'Immunohematologia, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain
| |
Collapse
|
46
|
Jin W, Lo KY, Sun YS, Ting YH, Simpson MJ. Quantifying the role of different surface coatings in experimental models of wound healing. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
De Paepe ME, Wong T, Chu S, Mao Q. Stromal cell-derived factor-1 (SDF-1) expression in very preterm human lungs: potential relevance for stem cell therapy for bronchopulmonary dysplasia. Exp Lung Res 2020; 46:146-156. [PMID: 32281423 DOI: 10.1080/01902148.2020.1751899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: The axis formed by CXC chemokine receptor 4 (CXCR4), expressed on mesenchymal stromal cells (MSCs), and stromal cell-derived factor-1 (SDF-1), expressed in recipient organs, is a critical mediator of MSC migration in non-pulmonary injury models. The role and regulation of SDF-1 expression in preterm lungs, of potential relevance for MSC-based cell therapy for bronchopulmonary dysplasia (BPD), is unknown. The aim of this study was to determine the spatiotemporal pattern of CXCR4/SDF-1 expression in lungs of extremely preterm infants at risk for BPD.Methods: Postmortem lung samples were collected from ventilated extremely preterm infants who died between 23 and 29 wks ("short-term ventilated") or between 36 and 39 wks ("long-term ventilated") corrected postmenstrual age. Results were compared with age-matched infants who had lived <12 h or stillborn infants ("early" and "late" controls). CXCR4 and SDF-1 expression was studied by immunohistochemistry, immunofluorescence/confocal microscopy, and qRT-PCR analysis.Results: Compared with age-matched controls without antenatal infection, lungs of early control infants with evidence of intrauterine infection/inflammation showed significant upregulation of SDF-1 expression, localized to the respiratory epithelium, and of CXCR4 expression, localized to stromal cells. Similarly, pulmonary SDF-1 mRNA levels were significantly higher in long-term ventilated ex-premature infants with established BPD than in age-matched controls. The pulmonary vasculature was devoid of SDF-1 expression at all time points. Endogenous CXCR4-positive stromal cells were preferentially localized along the basal aspect of SDF-1-positive bronchial and respiratory epithelial cells, suggestive of functionality of the CXCR4/SDF-1 axis.Conclusions: Incipient and established neonatal lung injury is associated with upregulation of SDF-1 expression, restricted to the respiratory epithelium. Knowledge of the clinical associations, time-course and localization of pulmonary SDF-1 expression may guide decisions about the optimal timing and delivery route of MSC-based cell therapy for BPD.
Collapse
Affiliation(s)
- Monique E De Paepe
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Talia Wong
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sharon Chu
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Quanfu Mao
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
48
|
Stromal Cell-Derived Factor-1 Enhances the Therapeutic Effects of Human Endometrial Regenerative Cells in a Mouse Sepsis Model. Stem Cells Int 2020; 2020:4820543. [PMID: 32256608 PMCID: PMC7103048 DOI: 10.1155/2020/4820543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
Endometrial regenerative cells (ERCs) are mesenchymal-like stromal cells obtained from human menstrual blood, whose positive therapeutic effects have been validated in several experimental models. Stromal cell-derived factor-1 (SDF-1), the ligand for CXCR4, plays an important role in the migration of mesenchymal stromal cells. The purpose of this study was to investigate the role of the SDF-1/CXCR4 pathway in the therapeutic effects of ERCs in a mouse sepsis model. Through preexperiment and confirmation, wild-type C57BL/6 mice were intraperitoneally injected with 10 mg/kg lipopolysaccharide (LPS). The therapeutic effects of ERCs with different pretreatments were evaluated by assessing sepsis-related symptoms, detecting tissue damage and measuring levels of inflammatory and oxidative stress-related factors. The in vitro experiments demonstrated that there was a much higher CXCR4 expression on ERCs when they were cocultured with SDF-1. The ex vivo experiment results showed that SDF-1 expression significantly increased in mouse tissues. Further experiments also confirmed that, compared with the unmodified ERC treatment group, SDF-1 pretreatment significantly enhanced the therapeutic effects of ERCs on alleviating sepsis symptoms, ameliorating pathological changes, reducing Bax level, and increasing Bcl-2 and PCNA expressions in mouse liver tissues. Furthermore, it was also found that SDF-1-pretreated ERCs contributed to reducing the levels of proinflammatory cytokines (TNF-α, IL-1β) and increasing the levels of anti-inflammatory factors (IL-4, IL10) in mouse serum, liver, and lung. Moreover, SDF-1-pretreated ERCs could also significantly decrease the levels of iNOS and MDA and increase the expression of Nrf2, HO-1, and SOD in liver tissues. Taken together, these results indicate that SDF-1 pretreatment plays a key role in improving the therapeutic effects of ERCs in alleviating sepsis-related symptoms, reducing tissue damage, regulating inflammatory imbalance, and relieving oxidative stress in a mouse sepsis model, which provides more possibilities for the clinical application of ERCs in sepsis and relevant diseases.
Collapse
|
49
|
lncRNA-TINCR Functions as a Competitive Endogenous RNA to Regulate the Migration of Mesenchymal Stem Cells by Sponging miR-761. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9578730. [PMID: 32185226 PMCID: PMC7061138 DOI: 10.1155/2020/9578730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/17/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Mounting evidences have indicated that terminal differentiation-induced lncRNA (TINCR) contributes to various cellular processes, such as proliferation, apoptosis, autophagy, migration, invasion, and metastasis. However, the function of TINCR in regulating migration of MSCs is largely unknown. In this study, the effects of TINCR on the migration of rat MSCs from the bone marrow were studied by Transwell assays and wound healing assays. Our results suggested that TINCR positively regulated migration of rMSCs. miR-761 mimics suppressed rMSC migration, whereas miR-761 inhibitor promoted migration. Target prediction analysis tools and dual-luciferase reporter gene assay identified Wnt2 as a direct target of miR-761. miR-761 could inhibit the expression of Wnt2. Further, the investigation about the function of TINCR in miR-761-induced migration of rMSCs was completed. These results demonstrated that TINCR took part in the regulation of miR-761-induced migration in rMSCs through the regulation of Wnt2 and its Wnt2 signaling pathway. Taken together, our results demonstrate that lncRNA-TINCR functions as a competitive endogenous RNA (ceRNA) to regulate the migration of rMSCs by sponging miR-761 which modulates the role of Wnt2. These findings provide evidence that lncRNA-TINCR has a chance to serve as a potential target for enhancing MSC homing through the miR-761/Wnt2 signaling pathway.
Collapse
|
50
|
Eljarrah A, Gergues M, Pobiarzyn PW, Sandiford OA, Rameshwar P. Therapeutic Potential of Mesenchymal Stem Cells in Immune-Mediated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:93-108. [PMID: 31898783 DOI: 10.1007/978-3-030-31206-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can self-renew and differentiate into cells of all germ layers. MSCs can be easily attracted to the site of tissue insult with high levels of inflammatory mediators. The general ability of MSCs to migrate at the sites of tissue injury suggested an innate ability for these cells to be involved in baseline tissue repair. The bone marrow is one of the primary sources of MSCs, though they can be ubiquitous. An attractive property of MSCs for clinical application is their ability to cross allogeneic barrier. However, alone, MSCs are not immune suppressive cells. Rather, they can be licensed by the tissue microenvironment to become immune suppressor cells. Immune suppressor functions of MSCs include those that blunt cytotoxicity of natural killer cells, suppression of T-cell proliferation, and "veto" function. MSCs, as third-party cells, suppress the immune response that generally recapitulates graft-versus-host disease (GvHD) responses. Based on the plastic functions of MSCs, these cells have dominated the field of cell-based therapies, such as anti-inflammatory and drug delivery. Here, we focus on the potential use of MSC for immunological disorders such as Crohn's disease and GvHD.
Collapse
Affiliation(s)
- Adam Eljarrah
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Rutgers School of Graduate School at New Jersey Medical School, Newark, NJ, USA
| | - Marina Gergues
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Rutgers School of Graduate School at New Jersey Medical School, Newark, NJ, USA
| | - Piotr W Pobiarzyn
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Rutgers School of Graduate School at New Jersey Medical School, Newark, NJ, USA
| | - Oleta A Sandiford
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Rutgers School of Graduate School at New Jersey Medical School, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine - Division of Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA.
| |
Collapse
|