1
|
Ma C, He Y, Wang H, Chang X, Qi C, Feng Y, Cai X, Bai M, Wang X, Zhao B, Dong W. Understanding the toxicity mechanism of gelsemine in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109886. [PMID: 38447648 DOI: 10.1016/j.cbpc.2024.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Gelsemium elegans (GE), also known as Duanchangcao, is a plant associated with toxic symptoms related to the abdomen; however, the toxicity caused by GE remains unknown. Gelsemine (GEL) is an alkaloid extracted from GE and is one of the most toxic alkaloids. This study used zebrafish as an animal model and employed high-throughput gene sequencing to identify genes and signaling pathways related to GEL toxicity. Exposure to GEL negatively impacted heart rate, swim bladder development, and activity in zebrafish larvae. Transcriptomics data revealed the enrichment of inflammatory and phagocyte signaling pathways. RT-PCR analysis revealed a decrease in the expression of pancreas-related genes, including the pancreatic coagulation protease (Ctr) family, such as Ctrl, Ctrb 1, and Ctrc, due to GEL exposure. Furthermore, GEL exposure significantly reduced Ctrb1 protein expression while elevating trypsin and serum amylase activities in zebrafish larvae. GEL also resulted in a decrease in pancreas-associated fluorescence area and an increase in neutrophil-related fluorescence area in transgenic zebrafish. This study revealed that GEL toxicity in zebrafish larvae is related to acute pancreatic inflammation.
Collapse
Affiliation(s)
- Chenglong Ma
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yanan He
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Huan Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China; State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Xu Chang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China
| | - Chelimuge Qi
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China; Department of agriculture and animal husbandry, XING AN VOCATIONAL AND TECHNICAL COLLEGE, Horqin Right Wing Front Banner, Inner Mongolia 137400, China
| | - Yuanzhou Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiaoxu Cai
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China
| | - Meirong Bai
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao, Inner Mongolia 028000, China
| | - Xueyan Wang
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China.
| |
Collapse
|
2
|
Ye B, Wang Q, Ye Q, Wang D, Wang Z, Dong Z, Zou J. Effects of different combinations of koumine and gelsemine on growth performance, intestinal health, and transcriptome of Cyprinus carpio. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133130. [PMID: 38086301 DOI: 10.1016/j.jhazmat.2023.133130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024]
Abstract
Koumine (KM) and gelsemine (GS) have shown significant benefits in livestock production, but their potential in aquaculture remains largely unexplored. This study examined the impact of different KM and GS combinations as feed additives on C. carpio (90 fish per group, initial weight 1.95 ± 0.08 g). KM and GS were introduced in ratios of 2:2 (mg/kg), 2:1 (mg/kg), and 2:0.67 (mg/kg) over a 10-week aquaculture experiment. The results demonstrate that the 2:1 (mg/kg) group increases the villus length, muscular layer thickness, crude protein, and crude fat content. Regarding fatty acid content, KM and GS enhance the levels of various fatty acids, including the total saturated fatty acid and total monounsaturated fatty acid. Additionally, KM and GS improve the composition and function of the intestinal microbiota. The 2:1 (mg/kg) group significantly elevates the enzymatic activities of SOD, MDA, CAT and upregulates the expression of immune-related genes such as toll-like receptor 2, transforming growth factor β, and glutathione S-transferase. Transcriptomic analysis suggests that KM and GS may have potential benefits for nutrient utilization and immune regulation in C. carpio. In summary, this study provides valuable insights into the use of KM and GS as feed additives in aquaculture.
Collapse
Affiliation(s)
- Bin Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiujie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiao Ye
- School of Life Sciences, Huizhou University, Huizhou 516007, China
| | - Dongjie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlu Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
He J, Wang ZZ, Li CH, Xu HL, Pan HZ, Zhao YX. Metabolic alteration of Tetrahymena thermophila exposed to CdSe/ZnS quantum dots to respond to oxidative stress and lipid damage. Biochim Biophys Acta Gen Subj 2023; 1867:130251. [PMID: 36244576 DOI: 10.1016/j.bbagen.2022.130251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/17/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
CdSe/ZnS Quantum dots (QDs) are possibly released to surface water due to their extensive application. Based on their high reactivity, even small amounts of toxicant QDs will disturb water microbes and pose a risk to aquatic ecology. Here, we evaluated CdSe/ZnS QDs toxicity to Tetrahymena thermophila (T. thermophila), a model organism of the aquatic environment, and performed metabolomics experiments. Before the omics experiment was conducted, QDs were found to induce inhibition of cell proliferation, and reactive oxygen species (ROS) production along with Propidium iodide labeled cell membrane damage indicated oxidative stress stimulation. In addition, mitochondrial ultrastructure alteration of T. thermophila was also confirmed by Transmission Electron Microscope results after 48 h of exposure to QDs. Further results of metabolomics detection showed that 0.1 μg/mL QDs could disturb cell physiological and metabolic metabolism characterized by 18 significant metabolite changes, of which twelve metabolites improved and three decreased significantly compared to the control. Kyoto Encyclopedia of Genes and Genomes analysis showed that these metabolites were involved in the ATP-binding cassette transporter and purine metabolism pathways, both of which respond to ROS-induced cell membrane damage. In addition, purine metabolism weakness might also reflect mitochondrial dysfunction associated with energy metabolism and transport abnormalities. This research provides deep insight into the potential risks of quantum dots in aquatic ecosystems.
Collapse
Affiliation(s)
- Jie He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Zheng Wang
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Chen-Hong Li
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Hai-Long Xu
- Collaborative Scientific Research Centre, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Hong-Zhi Pan
- Collaborative Scientific Research Centre, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Yu-Xia Zhao
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
4
|
Rodríguez-Martín D, Murciano A, Herráiz M, de Francisco P, Amaro F, Gutiérrez JC, Martín-González A, Díaz S. Arsenate and arsenite differential toxicity in Tetrahymena thermophila. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128532. [PMID: 35248958 DOI: 10.1016/j.jhazmat.2022.128532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
A comparative analysis of toxicities of both arsenic forms (arsenite and arsenate) in the model eukaryotic microorganism Tetrahymena thermophila (ciliate protozoa) has shown the presence of various detoxification mechanisms and cellular effects comparable to those of animal cells under arsenic stress. In the wild type strain SB1969 arsenate is almost 2.5 times more toxic than arsenite. According to the concentration addition model used in binary metallic mixtures their toxicities show an additive effect. Using fluorescent assays and flow cytometry, it has been detected that As(V) generates elevated levels of ROS/RNS compared to As(III). Both produce the same levels of superoxide anion, but As(V) also causes greater increases in hydrogen peroxide and peroxynitrite. The mitochondrial membrane potential is affected by both As(V) and As(III), and electron microscopy has also revealed that mitochondria are the main target of both arsenic ionic forms. Fusion/fission and swelling mitochondrial and mitophagy, together with macroautophagy, vacuolization and mucocyst extruction are mainly associated to As(V) toxicity, while As(III) induces an extensive lipid metabolism dysfunction (adipotropic effect). Quantitative RT-PCR analysis of some genes encoding antioxidant proteins or enzymes has shown that glutathione and thioredoxin metabolisms are involved in the response to arsenic stress. Likewise, the function of metallothioneins seems to be crucial in arsenic detoxification processes, after using both metallothionein knockout and knockdown strains and cells overexpressing metallothionein genes from this ciliate. The analysis of the differential toxicity of As(III) and As(V) shown in this study provides cytological and molecular tools to be used as biomarkers for each of the two arsenic ionic forms.
Collapse
Affiliation(s)
- Daniel Rodríguez-Martín
- Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28130 Madrid, Spain.
| | - Antonio Murciano
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Marta Herráiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | | | - Francisco Amaro
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Juan Carlos Gutiérrez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| |
Collapse
|
5
|
Ye Q, Feng Y, Wang Z, Zhou A, Xie S, Fan L, Xiang Q, Song E, Zou J. Effects of dietary Gelsemium elegans alkaloids on intestinal morphology, antioxidant status, immune responses and microbiota of Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2019; 94:464-478. [PMID: 31546035 DOI: 10.1016/j.fsi.2019.09.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Numerous plant extracts used as feed additives in aquaculture have been shown to stimulate appetite, promote growth and enhance immunostimulatory and disease resistance in cultured fish. However, there are few studies on the famous Chinese herbal medicine Gelsemium elegans, which attracts our attention. In this study, we used the Megalobrama amblycephala to investigate the effects of G. elegans alkaloids on fish intestinal health after diet supplementation with 0, 5, 10, 20 and 40 mg/kg G. elegans alkaloids for 12 weeks. We found that dietary G. elegans alkaloids at 40 mg/kg improved intestinal morphology by increasing villus length, muscle thickness and villus number in the foregut and midgut and muscle thickness in the hindgut (P < 0.05). These alkaloids also significantly improved intestinal antioxidant capabilities by increasing superoxide dismutase, catalase, total antioxidant capacity and malondialdehyde levels and up-regulated intestinal Cu/Zn-SOD and Mn-SOD (P < 0.05) at 20 and 40 mg/kg. Dietary G. elegans alkaloids improved intestinal immunity via up-regulating the pro-inflammatory cytokines IL-1β, IL-8, TNF-α and IFN-α and down-regulating expression of the anti-inflammatory cytokines IL-10 and TGF-β (P < 0.05) at 20 and 40 mg/kg. The expression of Toll-like receptors TRL1, 3, 4 and 7 were also up-regulated in intestine of M. amblycephala (P < 0.05). In intestinal microbiota, the abundance of Proteobacteria was increased while the Firmicutes abundance was decreased at phylum level after feeding the alkaloids (P < 0.05). The alkaloids also increased the abundance of the probiotic Rhodobacter and decreased the abundance of the pathogenic Staphylococcus at genus level (P < 0.05). In conclusion, dietary G. elegans alkaloid supplementation promoted intestine health by improving intestine morphology, immunity, antioxidant abilities and intestinal microbiota in M. amblycephala.
Collapse
Affiliation(s)
- Qiao Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yongyong Feng
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhenlu Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiong Xiang
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Enfeng Song
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
6
|
Ye Q, Feng Y, Wang Z, Zhou A, Xie S, Zhang Y, Xiang Q, Song E, Zou J. Effects of dietary Gelsemium elegans alkaloids on growth performance, immune responses and disease resistance of Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2019; 91:29-39. [PMID: 31100439 DOI: 10.1016/j.fsi.2019.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
The present study aim to investigate the effects of dietary Gelsemium elegans alkaloids supplementation in Megalobrama amblycephala. A basal diet supplemented with 0, 5, 10, 20 and 40 mg/kg G. elegans alkaloids were fed to M. amblycephala for 12 weeks. The study indicated that dietary 20 mg/kg and 40 mg/kg G. elegans alkaloids supplementation could significantly improve final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR), feed conversion ratio (FCR) and protein efficiency ratio (PER) (P < 0.05). The 20 mg/kg and 40 mg/kg G. elegans alkaloids groups showed significantly higher whole body and muscle crude protein and crude lipid contents compared to the control group (P < 0.05). The amino acid contents in muscle were also significantly increased in 20 mg/kg and 40 mg/kg groups (P < 0.05). Dietary 40 mg/kg G. elegans alkaloids had a significant effect on the contents of LDH, AST, ALT, ALP, TG, TC, LDL-C, HDL-C, ALB and TP in M. amblycephala (P < 0.05). Fish fed 20 mg/kg and 40 mg/kg dietary G. elegans alkaloids showed significant increase in complement 3, complement 4 and immunoglobulin M contents. The liver antioxidant enzymes (SOD, CAT and T-AOC) and MDA content significantly increased at 20 mg/kg and 40 mg/kg G. elegans alkaloids supplement (P < 0.05). The mRNA levels of immune-related genes IL-1β, IL8, TNF-α and IFN-α were significantly up-regulated, whereas TGF-β and IL10 genes were significantly down-regulated in the liver, spleen and head kidney of fish fed dietary supplementation with 20 mg/kg and 40 mg/kg G. elegans alkaloids. After challenge with Aeromonas hydrophila, significant higher survival rate was observed at 20 mg/kg and 40 mg/kg G. elegans alkaloids supplement (P < 0.05). Therefore, these results indicated that M. amblycephala fed a diet supplemented with 20 mg/kg and 40 mg/kg G. elegans alkaloids could significantly promote its growth performance, lipids and amino acids deposition, immune ability and resistance to Aeromonas hydrophila.
Collapse
Affiliation(s)
- Qiao Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yongyong Feng
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhenlu Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yue Zhang
- Department of Pharmacology, Department Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Qiong Xiang
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Enfeng Song
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
7
|
Lin L, Liu YC, Liu ZY. The Difference in Cytotoxic Activity between Two Optical Isomers of Gelsemine from Gelsemium elegans Benth. on PC12 Cells. Molecules 2019; 24:molecules24102004. [PMID: 31130596 PMCID: PMC6571982 DOI: 10.3390/molecules24102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022] Open
Abstract
Two optical isomers, +/- gelsemine (1, 2), together with one known compound were isolated from the whole plant of G. elegans. The structures of the separated constituents were elucidated on 1D and 2D (1H-1H COSY, HMBC, HSQC) NMR spectroscopy and high-resolution mass spectrometry (HRMS). The isolated alkaloids were tested in vitro for cytotoxic potential against PC12 cells by the MTT assay. As a result, (+) gelsemine (compound 1) exhibited cytotoxic activity against PC12 cells with an IC50 value of 31.59 μM, while (-) gelsemine (compound 2) was not cytotoxic.
Collapse
Affiliation(s)
- Li Lin
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Yan-Chun Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China.
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
8
|
Ye Q, Zhang C, Wang Z, Feng Y, Zhou A, Xie S, Xiang Q, Song E, Zou J. Induction of oxidative stress, apoptosis and DNA damage by koumine in Tetrahymena thermophila. PLoS One 2019; 14:e0212231. [PMID: 30753239 PMCID: PMC6372211 DOI: 10.1371/journal.pone.0212231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/29/2019] [Indexed: 01/13/2023] Open
Abstract
Koumine is a component of the Chinese medicinal herb Gelsemium elegans and is toxic to vertebrates. We used the ciliate Tetrahymena thermophila as a model to evaluate the toxic effects of this indole alkaloid in eukaryotic microorganisms. Koumine inhibited T. thermophila growth and viability in a dose-dependent manner. Moreover, this drug produced oxidative stress in T. thermophila cells and expressions of antioxidant enzymes were significantly elevated at high koumine levels (p < 0.05). Koumine also caused significant levels of apoptosis (p < 0.05) and induced DNA damage in a dose-dependent manner. Mitophagic vacuoles were present in cells indicating induction of autophagy by this drug. Expression of ATG7, MTT2/4, CYP1 and HSP70 as well as the MAP kinase pathway gene MPK1 and MPK3 were significantly altered after exposed to koumine. This study represents a preliminary toxicological evaluation of koumine in the single celled eukaryote T. thermophila.
Collapse
Affiliation(s)
- Qiao Ye
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chaonan Zhang
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhenlu Wang
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongyong Feng
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Aiguo Zhou
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaolin Xie
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qiong Xiang
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Enfeng Song
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jixing Zou
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|