1
|
Impact of Radial Lands on the Reduction of Torque/Force Generation of a Heat-Treated Nickel-Titanium Rotary Instrument. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study investigated the impact of a one-sided radial-landed cross-sectional design of a heat-treated nickel-titanium rotary instrument (JIZAI, MANI, Japan; JZ) on torque/force generation and canal-shaping ability, using an experimental non-landed instrument (non-landed JZ) for comparison. Both instruments had tip sizes of 25 and 0.04 or 0.06 taper and were similar in metallurgy and geometry, except for the presence/absence of a radial land. Twenty J-shaped simulated resin canals were instrumented in a two-instrument single-length sequence using an automated root canal instrumentation device with a torque/force analyzing unit. Pre- and post-instrumentation images of the resin canals were analyzed for canal-centering ability at 0–3 mm from the apex. The mean centering ratio was not significantly different between JZ and non-landed JZ (p > 0.05). In the 2nd instrumentation, JZ showed a significantly smaller torque compared with the non-landed JZ (p < 0.05). Regardless of instrumentation sequence, JZ showed a significantly smaller maximum upward force, representing screw-in force (p < 0.05), and a larger maximum downward force (p < 0.05) than the non-landed JZ. JZ generated smaller screw-in forces and had similar canal-centering ability compared with the non-landed JZ.
Collapse
|
2
|
Smutný M, Kopeček M, Bezrouk A. An Investigation of the Accuracy and Reproducibility of 3D Printed Transparent Endodontic Blocks. ACTA MEDICA (HRADEC KRALOVE, CZECH REPUBLIC) 2022; 65:59-65. [DOI: 10.14712/18059694.2022.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Due to a broad spectrum of endodontic rotary instruments on the market and no standardised protocol for comparing their mechanical properties, it can be challenging for clinician to choose proper instruments. In vitro studies using resin blocks with artificial canals can offer many valuable information because of their uniformity compared to studies performed on extracted teeth. To improve precision and reproducibility of artificial canals, 3D printing was used in this study to manufacture endodontic test block samples. 20 commercially available endodontic blocks Endo-Training-Bloc-J by Dentsply Sirona were tested. The mean values of the measured parameters were used for a 3D CAD model of their replicas. 20 copies of the endodontic training blocks were printed from acrylic resin (VeroClear-RGD810, Stratasys, Eden Prairie, USA) using the 3D printer Objet30 Pro (Stratasys, Eden Prairie, USA). The key dimensions of the commercial blocks and the 3D printed blocks were measured under and compared using t – test and Levene’s test for equality of variances. The profiles of the 3D printed artificial canals showed significantly lower dimensional variability when compared with the commercial blocks. 3D polyjet printing proved to be a precise and reproducible method for production of blocks for testing endodontic rotary instruments.
Collapse
|